留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CeO2的形貌特征对Ni/CeO2催化剂CO甲烷化性能的影响

闫宁 周安宁 张亚刚 杨志远 贺新福 张亚婷

闫宁, 周安宁, 张亚刚, 杨志远, 贺新福, 张亚婷. CeO2的形貌特征对Ni/CeO2催化剂CO甲烷化性能的影响[J]. 燃料化学学报(中英文), 2020, 48(4): 466-475.
引用本文: 闫宁, 周安宁, 张亚刚, 杨志远, 贺新福, 张亚婷. CeO2的形貌特征对Ni/CeO2催化剂CO甲烷化性能的影响[J]. 燃料化学学报(中英文), 2020, 48(4): 466-475.
YAN Ning, ZHOU An-ning, ZHANG Ya-gang, YANG Zhi-yuan, HE Xin-fu, ZHANG Ya-ting. Morphologic effect of CeO2 on the catalytic performance of Ni/CeO2 in CO methanation[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 466-475.
Citation: YAN Ning, ZHOU An-ning, ZHANG Ya-gang, YANG Zhi-yuan, HE Xin-fu, ZHANG Ya-ting. Morphologic effect of CeO2 on the catalytic performance of Ni/CeO2 in CO methanation[J]. Journal of Fuel Chemistry and Technology, 2020, 48(4): 466-475.

CeO2的形貌特征对Ni/CeO2催化剂CO甲烷化性能的影响

基金项目: 

陕西省重点产业创新链-工业领域项目 2017ZDCXL-GY-10-01-02

详细信息
  • 中图分类号: O643.32

Morphologic effect of CeO2 on the catalytic performance of Ni/CeO2 in CO methanation

Funds: 

the Shaanxi Key Industry Innovation Chain Industrial Field Project 2017ZDCXL-GY-10-01-02

More Information
    Corresponding author: ZHOU An-ning, Tel: 0298-5583549, E-mail: psu564@139.com
  • 摘要: 通过改变制备方法合成了不同形貌的CeO2载体(包括球状CeO2-S、花苞状CeO2-F和多面体状CeO2-P),并用氨水配位浸渍法制备了Ni/CeO2催化剂。研究了CeO2载体结构与Ni/CeO2催化剂上CO甲烷化反应性能的关系。结果表明,CeO2-S、CeO2-F和CeO2-P载体暴露的晶面和氧空位不同,对Ni/CeO2催化剂催化活性影响也不相同。CeO2-S氧空位最多,Ni/CeO2-S在350 ℃下CO转化率和CH4选择性分别达到99.19%和88.88%。10 h热稳定性测试结果表明,Ni/CeO2-S催化剂上的积炭量最少(2.5%),CH4选择性一直保持在80%左右,分别是Ni/CeO2-F的1.3倍和Ni/CeO2-P的17.6倍。这主要归因于CeO2-S载体比表面积较大,主要暴露[111]晶面,且表面氧空位含量较多,使Ni/CeO2-S催化剂的载体与活性中心的相互作用增强,从而呈现出优异的抗积炭性能。
  • 图  1  CeO2-S((a), (d))、CeO2-F((b), (e))和CeO2-P((c), (f))的SEM照片

    Figure  1  SEM images of CeO2-S ((a), (d)), CeO2-F ((b), (e)) and CeO2-P ((c), (f))

    图  2  CeO2载体(a)和Ni/CeO2(b)催化剂的XRD谱图

    Figure  2  XRD patterns of various CeO2 supports (a) and Ni/CeO2 catalysts (b)

    图  3  NiO/CeO2-S((a), (d))、NiO/CeO2-F ((b), (e))和NiO/CeO2-P ((c), (f))的TEM和HRTEM照片

    Figure  3  TEM and HRTEM images of NiO/CeO2-S ((a), (d)), NiO/CeO2-F ((b), (e)) and NiO/CeO2-P catalysts ((c), (f))

    图  4  Ni/CeO2催化剂的N2吸附-脱附等温线和孔径分布

    Figure  4  N2 adsorption-desorption isotherms (a) and pore size distribution curves (b) of various Ni/CeO2 catalysts

    图  5  NiO/CeO2催化剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of NiO/CeO2 catalysts

    图  6  Ni/CeO2催化剂的Raman谱图

    Figure  6  Raman spectra of various Ni/CeO2 catalysts

    图  7  Ni/CeO2催化剂Ni 2p(a)、Ce 3d(b)和O 1s (c)的XPS谱图

    Figure  7  Ni 2p (a), Ce 3d (b) and O 1s (c) XPS spectra of the Ni/CeO2 catalysts

    图  8  Ni/CeO2催化剂的CO转化率(a)和甲烷选择性(b)

    Figure  8  CO conversion (a) and CH4 selectivity (b) over Ni/CeO2 catalysts

    图  9  Ni/CeO2催化剂的热稳定性(400 ℃)

    Figure  9  Thermal stability test of Ni/CeO2 catalysts at 400 ℃

    图  10  400 ℃反应后Ni/CeO2催化剂的TG-DSC曲线

    Figure  10  TG-DSC profiles of the Ni/CeO2 catalysts after reaction at 400 ℃

    a: Ni/CeO2-S; b: Ni/CeO2-F; c: Ni/CeO2-P

    表  1  CeO2载体和Ni/CeO2催化剂的结构参数

    Table  1  Structural properties of CeO2 supports and Ni/CeO2catalysts

    Sample Ni loadinga w/% ABETb /(m2·g-1) vporeb /(m3·g-1) dporeb /nm d(Ni)c /nm Ni dispersiond/%
    CeO2-S - 79.89 0.042 44.34 - -
    CeO2-F - 59.65 0.041 50.03 - -
    CeO2-P - 39.71 0.017 52.39 - -
    Ni/CeO2-S 9.50 55.42 0.056 56.90 22.13 17.23
    Ni/CeO2-F 9.25 52.21 0.076 57.50 46.24 14.65
    Ni/CeO2-P 10.02 40.36 0.030 48.80 52.65 10.98
    a: determined by ICP-AES measurement; b: measured using N2 adsorption-desorption, the surface area was calculated by the BET method, and the pore volume and pore size were calculated by the Barrett-Joyner-Halenda method; c: calculated with the Scherrer equation applied to the Ni (111) peak; d: H2 consumption was determined based on the H2-TPD, Ni dispersion by calculation
    下载: 导出CSV

    表  2  催化剂表面物种的定量分析

    Table  2  Quantitative XPS analysis results of the Ni/CeO2 catalysts

    Sample Ce3+/% Oα/% Ni0:Ni2+:Ni3+
    Ni/CeO2-S 16.16 45.17 0.39:0.36:0.25
    Ni/CeO2-F 14.59 40.49 0.27:0.31:0.42
    Ni/CeO2-P 11.34 28.29 0.32:0.31:0.37
    下载: 导出CSV
  • [1] YANG X Z, WANG X, GAO G J, WENDURIMA, LIU E M, SHI Q Q, ZHANG J N, HAN C H, WANG J, LU H L, LIU J, TONG M. Nickel on a macro-mesoporous Al2O3@ZrO2 core/shell nanocomposite as a novel catalyst for CO methanation[J]. Int J Hydrogen Energy, 2013, 38(32):13926-13937. doi: 10.1016/j.ijhydene.2013.08.083
    [2] BOESCH F T. Synthesis of reliable networks:A survey[J]. IEEE Trans Reliab, 2007, 35(3):240-246. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1002.2013
    [3] GALLETTI C, SPECCHIA S, SARACCO G, SPECCHIA V. Co-selective methanation over Ru-γAl2O3 catalysts in H2-rich gas for PEM-FC applications[J]. Chem Eng Sci, 2008, 65(1):590-596. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c9442e40e0ee7572019fbff9a33a2c7
    [4] TRIMM D, ILSENÖNSAN Z. Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles[J]. Catal Rev, 2000, 43(1/2):31-84. doi: 10.1081/CR-100104386
    [5] 李茂华, 杨博, 鹿毅, 刘玉梅.煤制天然气甲烷化催化剂及机理的研究进展[J].工业催化, 2014, 22(1):10-24. doi: 10.3969/j.issn.1008-1143.2014.01.002

    LI Mao-hua, YANG Bo, LU Yi, LIU Yu-mei. Research advance in methanation catalysts for synthetic natural gas and their catalytic mechanisms[J]. Ind Catal, 2014, 22(1):10-24. doi: 10.3969/j.issn.1008-1143.2014.01.002
    [6] AHMAD ZAMANI AB HALIM, RUSMIDAH ALI, WAN AZELEE WAN ABU BAKAR. CO2/H2 methanation over M*/Mn/Fe-Al2O3 (M*:Pd, Rh, and Ru) catalysts in natural gas; optimization by response surface methodology-central composite design[J]. Clean Technol Environ, 2015, 17(3):627-636. doi: 10.1007/s10098-014-0814-8
    [7] 李春启.新型合成气甲烷化催化剂La2O3-ZrO2-Ni/Al2O3的制备与性能[J].化工进展, 2019, 38(6):2776-2783. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201906026

    LI Chun-qi. Preparation of a novel catalyst of La2O3-ZrO2-Ni/Al2O3 and its performance in syngas methanation[J]. Chem Ind Eng Prog, 2019, 38(6):2776-2783. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgjz201906026
    [8] 王辉, 张俊峰, 白云星, 王文峰, 谭猗生, 韩怡卓. NiO@SiO2核壳催化剂在浆态床中低温甲烷化研究[J].燃料化学学报, 2016, 44(5):548-556. doi: 10.3969/j.issn.0253-2409.2016.05.006

    WANG Hui, ZHANG Jun-feng, BAI Yun-xing, WANG Wen-feng, TAN Yi-sheng, HAN Yi-zhuo. NiO@SiO2 core-shell catalyst for low-temperature methanation of syngas in slurry reactor[J]. J Fuel Chem Technol, 2016, 44(5):548-556. doi: 10.3969/j.issn.0253-2409.2016.05.006
    [9] LE T A, KANG J K, PARK E D. CO and CO2 methanation over Ni/SiC and Ni/SiO2 catalysts[J]. Top Catal, 2018, 61(15/17):1537-1544. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=448e36651c547decd3e6763146fe871a
    [10] HAN Y, WEN B, ZHU M Y, DAI B. Lanthanum incorporated in MCM-41 and its application as a support for a stable Ni-based methanation catalyst[J]. J Rare Earth, 2018, 36(4):367-373. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb-e201804007
    [11] 周亭, 郭芳, 许俊强, 陈志, 李军, 刘奇. CO2甲烷化Ni基分子筛催化剂的研究进展[J].功能材料, 2017, 48(6):6029-6033. http://d.old.wanfangdata.com.cn/Periodical/gncl201706006

    ZHOU Ting, GUO Fang, XU Jun-qiang, CHEN Zhi, LI Jun, LIU Qi. Research progress in the Ni-based molecular sieve catalysts for the methanation of carbon dioxide[J]. J Funct Mater, 2017, 48(6):6029-6033. http://d.old.wanfangdata.com.cn/Periodical/gncl201706006
    [12] LIN Y, ZHU Y, PAN X, BAO X. Modulating the methanation activity of Ni by the crystal phase of TiO2[J]. Catal Sci Technol, 2017, 7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01f9c567324f062670b403b06a3d1043
    [13] LIU Q, LIAO L, LIU Z, DONG X. Effect of ZrO2 crystalline phase on the performance of Ni-B/ZrO2 catalyst for the CO selective methanation[J]. Chin J Chem Eng, 2011, 19(3):434-438. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjce201103011
    [14] ZYRYANOVA M M, SNYTNIKOV P V, GULYAEV R V, AMOSOV Y I, BORONIN A I, SOBYANIN V A. Performance of Ni/CeO2 catalysts for selective CO methanation in hydrogen-rich gas[J]. Chem Eng J, 2014, 238:189-197. doi: 10.1016/j.cej.2013.07.034
    [15] ZHANG X, RUI N, JIA X, HU X, LIU C. Effect of decomposition of catalyst precursor on Ni/CeO2 activity for CO methanation[J]. Chin J Catal, 2019, 40(4):495-503. doi: 10.1016/S1872-2067(19)63289-4
    [16] WANG J B, TAI Y L, DOW W P, HUANG T J. Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane[J]. Appl Catal A:Gen, 2001, 218(1/2):69-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cbe5f19c4dc3746099ce0e47711aadb
    [17] ODEDAIRO T, CHEN J, ZHU Z. Metal-support interface of a novel Ni-CeO2 catalyst for dry reforming of methane[J]. Catal Commun, 2013, 31(Complete):25-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c25a75f8185cb44c951655318e412db9
    [18] 张涛, 张亚文.金属-氧化物界面中的金属-载体强相互作用及其对贵金属-氧化铈负载型催化材料性质调控的研究进展[J].中国稀土学报, 2014, 32(2):129-142. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201402001

    ZHANG Tao, ZHANG Ya-wen. Research advances on strong metal-support interactions at metal-oxide interfaces and their roles in regulating catalytic properties of noble metal-ceria supported catalysts[J]. J Rare Earth, 2014, 32(2):129-142. http://d.old.wanfangdata.com.cn/Periodical/zgxtxb201402001
    [19] MAI H X, SUN L D, ZHANG Y W, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B, 2005, 109(51):24380-24385. doi: 10.1021/jp055584b
    [20] 刘玉娟, 王东哲, 张磊, 白金, 陈琳, 刘道胜. CeO2形貌对甲醇水蒸汽重整CuO/CeO2催化剂的影响[J].精细化工, 2018, 35(12):71-77+112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxhg201812011

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, BAI Jin, CHEN Lin, LIU Dao sheng. Effect of CeO2 morphology on the performance of CuO/CeO2 catalysts for methanol steam reforming[J]. Fine Chem, 2018, 35(12):71-77+112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxhg201812011
    [21] 刘浩文, 刘荷芬, 乐琦, 韩晓彦.微波法合成蝴蝶型超细CeO2及其性能研究[J].中南民族大学学报(自然科学版), 2016, 35(3):17-20. http://d.old.wanfangdata.com.cn/Periodical/znmzxyxb-zrkx201603004

    LIU Hao-wen, LIU He-fen, YUE Qi, HAN Xiao-yan. Microwave synthesis of butterfly-type superfine CeO2 and its properties[J]. J South-Cent Univ Natl (Nat Sci Ed), 2016, 35(3):17-20. http://d.old.wanfangdata.com.cn/Periodical/znmzxyxb-zrkx201603004
    [22] LE T A, KIM M S, LEE S H, KIM T W, PARK E D. CO and CO2 methanation over supported Ni catalysts[J]. Catal Today, 2016, 293(4):1-7. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228845933/
    [23] SHAN W, LUO M, YING P, SHEN W, LI C. Reduction property and catalytic activity of Ce1-xNixO2 mixed oxide catalysts for CH4 oxidation[J]. Appl Catal A:Gen, 2003, 246(1):1-9. doi: 10.1016/S0926-860X(02)00659-2
    [24] WANG L H, LIU H, LIU Y, CHEN Y, YANG S Q. Effect of precipitants on Ni-CeO2 catalysts prepared by a co-precipitation method for the reverse water-gas shift reaction[J]. J Rare Earth, 2013, 31:969. doi: 10.1016/S1002-0721(13)60014-9
    [25] TAN H Y, WANG J, YU S Z, ZHOU K B. Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation[J]. Environ Sci Technol, 2015, 49(14):8675-82. doi: 10.1021/acs.est.5b01264
    [26] GROSVENOR A P, BIESINGER M C, SMART R S C, MCINTYRE N S. New interpretations of XPS spectra of nickel metal and oxides[J]. Surf Sci, 2006, 600(9):1771-1779. doi: 10.1016/j.susc.2006.01.041
    [27] ZHANG S, HUANG Z Q, MA Y, GAO W, LI J, CAO F. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2[J]. Nat Commun, 2017, 8:15266. doi: 10.1038/ncomms15266
    [28] HENDERSON M A, PERKINS C L, ENGELHARD M H, THEVUTHASN S, PEDEN C H F. Redox properties of water on the oxidized and reduced surfaces of CeO2(111)[J]. Surf Sci, 2003, 526(1):1-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=812de0e890f65cf3272f63360e545f15
    [29] MCCARTY J G, WISE H. Hydrogenation of surface carbon on alumina-supported nickel[J]. J Catal, 1979, 57(3):406-416. doi: 10.1016/0021-9517(79)90007-1
    [30] 杨霞, 田大勇, 孙守理, 孙琦. CeO2助剂对Ni基催化剂甲烷化性能的影响[J].工业催化, 2014, 22(2):137-143. doi: 10.3969/j.issn.1008-1143.2014.02.012

    YANG Xia, TIAN Da-yong, SUN Shou-li, SUN Qi. Effect of CeO2 on the performance of nickel-based catalysts for methanation[J]. Ind Catal, 2014, 22(2):137-143. doi: 10.3969/j.issn.1008-1143.2014.02.012
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  52
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 修回日期:  2020-03-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回