留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油页岩干酪根化学键浓度与能量密度研究

王擎 程枫 潘朔

王擎, 程枫, 潘朔. 油页岩干酪根化学键浓度与能量密度研究[J]. 燃料化学学报(中英文), 2017, 45(10): 1209-1218.
引用本文: 王擎, 程枫, 潘朔. 油页岩干酪根化学键浓度与能量密度研究[J]. 燃料化学学报(中英文), 2017, 45(10): 1209-1218.
WANG Qing, CHENG Feng, PAN Shuo. Chemical bond concentration and energy density of oil shale kerogen[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1209-1218.
Citation: WANG Qing, CHENG Feng, PAN Shuo. Chemical bond concentration and energy density of oil shale kerogen[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1209-1218.

油页岩干酪根化学键浓度与能量密度研究

基金项目: 

国家自然科学基金 51676032

详细信息
    通讯作者:

    王擎, Tel:0432-64807366, Fax:0432-64806281, E-mail:rlx888@126.com

  • 中图分类号: TK16

Chemical bond concentration and energy density of oil shale kerogen

Funds: 

the National Natural Science Foundation of China 51676032

  • 摘要: 以抚顺、茂名油页岩干酪根13C NMR、XPS与元素分析数据为基础,构建了油页岩干酪根分子结构模型,同时以化学键为标准对抚顺、茂名干酪根结构模型进行了修改,构建的干酪根结构模型与实验化学键浓度匹配良好,从化学键角度验证了模型的准确性与合理性。以自建及文献中九个不同变质程度的油页岩干酪根结构模型为基础,研究了油页岩干酪根变质程度与各类化学键浓度及能量密度关系。结果表明,随油页岩干酪根变质程度的提高,芳香碳分别与芳香碳、脂肪碳、氢原子等原子形成的化学键浓度升高,脂肪碳与脂肪碳、氢原子等原子形成的化学键浓度下降,其中,芳香碳之间、脂肪碳与氢原子之间的化学键浓度变化最明显。组成油页岩干酪根势能的价电子能密度及非键能密度随干酪根变质程度的提高总体上呈现上升趋势,成为组成油页岩干酪根稳定的化学能。
  • 图  1  11个油页岩干酪根结构模型示意图

    Figure  1  Structure models of oil shale kerogens

    图  2  模型密度变化曲线

    Figure  2  Model density variation curves

    图  3  不同类型碳碳化学键曲线

    Figure  3  C-C chemical bonds curves

    图  4  碳氢化学键曲线

    Figure  4  C-H bonds curves

    图  5  碳氧化学键曲线

    Figure  5  C-O bonds curves

    图  6  总化学键曲线

    Figure  6  Total chemical bonds curves

    图  7  总能量密度曲线

    Figure  7  Total energy density curves

    图  8  价电子能密度曲线

    Figure  8  Valence electron energy density curves

    图  9  非键能密度曲线

    Figure  9  Non-bond energy density curves

    表  1  抚顺、茂名干酪根的元素分析

    Table  1  Ultimate analysis of Fushun and Maoming kerogen

    Sample Ultimate analysis wdaf/%
    C H Oa N S
    FS 72.27 8.65 7.64 2.78 2.75
    FS correction 76.81 9.19 8.12 2.95 2.92
    MM 70.64 8.35 8.93 2.15 4.81
    MM correction 74.45 8.80 9.41 2.27 5.07
    daf: dry and ash-free base; a: by difference
    下载: 导出CSV

    表  2  抚顺、茂名干酪根的XPS分析

    Table  2  XPS analysis of Fushun and Maoming kerogen

    Elemental
    peaks
    Functionalities Relative content w /%
    FS MM
    C 1s C-C/C-H 94.44 94.01
    C-O/C-OH 4.94 5.00
    C=O/O-C-O 0.00 0.10
    O-C=O 0.62 0.89
    N 1s pyridine 15.94 9.30
    amino 11.53 12.08
    pyrrolic 45.48 45.07
    quaternary 23.34 27.18
    nitrogen oxides 3.71 6.37
    S 2p pyrite 0.99 1.81
    aromatic sulfur 10.66 4.08
    C-S 38.58 34.80
    sulfoxide 14.16 18.55
    sulfone 35.61 40.76
    下载: 导出CSV

    表  3  抚顺、茂名干酪根碳结构分布参数

    Table  3  Structural carbon parameters of Fushun and Maoming kerogen

    Parameters Carbon structure FS MM
    far 0.2538 0.2298
    farH 0.1062 0.1122
    farC 0.0562 0.0479
    farO 0.0309 0.0251
    faC -COOH/R 0.0062 0.0089
    faO 0.0000 0.0010
    fal 0.7352 0.7479
    falO 0.0185 0.0249
    SR 0.3858 0.3480
    SO 0.1416 0.1855
    ST 0.3561 0.4076
    NR 0.8476 0.8155
    下载: 导出CSV

    表  4  实验与模型化学键浓度

    Table  4  Experiment and model chemical bond concentration

    Parameter FS experiment FS model MM experiment MM model
    far 0.253 8 0.262 5 0.229 8 0.229 5
    farH 0.106 2 0.108 3 0.112 2 0.118 9
    farB 0.060 5 0.055 3 0.044 6 0.041 0
    farC 0.056 2 0.062 5 0.047 9 0.045 1
    farO 0.030 9 0.033 3 0.025 1 0.024 6
    fal 0.735 2 0.729 2 0.747 9 0.758 2
    H/C 1.436 2 1.441 7 1.410 8 1.409 8
    O/C 0.079 2 0.079 2 0.094 9 0.094 3
    N/C 0.033 0 0.033 3 0.025 5 0.024 6
    S/C 0.014 3 0.012 5 0.025 5 0.024 6
    Car-Car 0.016 0 0.016 6 0.013 8 0.013 8
    Cal-Car 0.003 6 0.004 0 0.003 0 0.002 8
    Cal-Cal 0.051 7 0.050 6 0.052 5 0.053 4
    Car-H 0.006 8 0.007 0 0.007 0 0.007 4
    Cal-H 0.080 9 0.080 3 0.077 2 0.075 8
    Car-O 0.002 0 0.002 1 0.001 6 0.001 5
    Cal-O 0.001 6 0.001 6 0.002 1 0.002 6
    Cal=O 0.000 4 0.000 5 0.000 6 0.000 8
    O-H 0.004 3 0.003 7 0.003 7 0.003 6
    Total 0.167 2 0.166 4 0.164 7 0.161 7
    下载: 导出CSV

    表  5  11个油页岩干酪根结构模型化学键浓度及芳碳率参数

    Table  5  Chemical bond concentration and aromatic carbon parameters of eleven kerogen structure models

    Models H/C far% Car-Car Car-Cal Cal-Cal C-C Car-H
    (1) 1.674 9 0.115 2 0.007 3 0.003 4 0.051 2 0.063 2 0.001 6
    (2) 1.553 2 0.174 5 0.011 3 0.003 8 0.046 7 0.064 2 0.003 2
    (3) 0.582 9 0.794 3 0.067 3 0.008 9 0.010 9 0.087 2 0.017 8
    (4) 0.875 5 0.566 5 0.043 9 0.007 5 0.027 8 0.079 4 0.011 5
    (5) 1.034 0 0.417 0 0.029 5 0.010 6 0.022 1 0.073 8 0.014 8
    (6) 1.327 7 0.280 9 0.016 5 0.007 2 0.029 1 0.060 0 0.007 5
    (7) 1.515 4 0.228 0 0.014 3 0.004 7 0.048 2 0.067 6 0.006 2
    (8) 0.905 0 0.586 8 0.048 5 0.011 3 0.022 8 0.082 5 0.010 1
    (9) 1.579 2 0.251 6 0.016 8 0.007 9 0.045 7 0.071 4 0.007 2
    (10) 1.441 7 0.262 5 0.016 6 0.004 0 0.040 4 0.066 1 0.007 0
    (11) 1.409 8 0.229 5 0.013 8 0.002 8 0.039 6 0.063 1 0.007 4
    Models Cal-H C-H Car-O Cal-O Cal=O C-O O-H
    (1) 0.102 1 0.103 7 0.001 3 0.006 0 0.002 4 0.009 7 0.001 0
    (2) 0.091 6 0.094 8 0.001 9 0.006 7 0.001 1 0.009 7 0.002 1
    (3) 0.022 7 0.040 6 0.002 8 0.004 1 0.000 0 0.006 9 0.000 4
    (4) 0.043 6 0.055 0 0.004 6 0.005 2 0.001 4 0.011 2 0.002 9
    (5) 0.054 0 0.068 8 0.000 6 0.003 2 0.000 6 0.004 4 0.001 5
    (6) 0.065 4 0.072 9 0.001 3 0.010 6 0.000 8 0.012 6 0.004 6
    (7) 0.087 7 0.093 9 0.003 7 0.004 4 0.001 2 0.009 3 0.002 9
    (8) 0.051 9 0.062 0 0.001 2 0.004 3 0.000 9 0.006 3 0.000 3
    (9) 0.097 7 0.104 9 0.000 3 0.001 1 0.000 7 0.002 1 0.000 3
    (10) 0.080 3 0.087 2 0.002 1 0.001 6 0.000 5 0.004 3 0.003 7
    (11) 0.075 8 0.083 2 0.001 5 0.002 6 0.000 8 0.004 9 0.003 6
    下载: 导出CSV

    表  6  干酪根结构模型能量密度组成

    Table  6  Energy density composition of kerogen structure models

    Models Total energy Valence electron energy Bond energy Angle energy Torsion energy
    (1) 0.156 4 0.075 9 0.019 8 0.038 5 0.017 5
    (2) 0.152 4 0.092 6 0.022 2 0.047 9 0.022 2
    (3) 0.421 7 0.235 3 0.056 0 0.128 3 0.048 2
    (4) 0.252 1 0.131 3 0.033 6 0.063 7 0.033 3
    (5) 0.174 5 0.088 7 0.020 6 0.034 0 0.033 5
    (6) 0.149 5 0.084 8 0.019 8 0.041 5 0.023 2
    (7) 0.162 3 0.079 8 0.023 7 0.039 7 0.016 2
    (8) 0.270 4 0.120 2 0.036 8 0.052 6 0.030 4
    (9) 0.179 1 0.089 3 0.026 7 0.045 1 0.017 1
    (10) 0.174 5 0.096 6 0.023 9 0.058 7 0.013 8
    (11) 0.178 6 0.102 1 0.023 3 0.061 5 0.017 1
    Models Inversion energy Non-bond energy Hydrogen bond energy Van der waals energy Electrostatic energy
    (1) 0.000 14 0.080 5 -0.000 26 0.094 9 -0.014 2
    (2) 0.000 27 0.059 8 -0.000 01 0.100 7 -0.040 9
    (3) 0.002 79 0.186 4 0.000 00 0.188 3 -0.001 9
    (4) 0.000 57 0.120 9 -0.001 14 0.143 4 -0.021 4
    (5) 0.000 62 0.085 8 -0.001 48 0.097 3 -0.010 1
    (6) 0.000 27 0.064 7 -0.002 42 0.095 0 -0.028 0
    (7) 0.000 15 0.082 5 -0.000 57 0.100 6 -0.017 5
    (8) 0.000 37 0.150 2 0.000 00 0.161 8 -0.011 6
    (9) 0.000 23 0.089 8 -0.000 56 0.099 4 -0.009 0
    (10) 0.000 22 0.077 9 -0.001 40 0.094 4 -0.015 1
    (11) 0.000 23 0.076 4 -0.000 02 0.096 2 -0.019 7
    下载: 导出CSV
  • [1] 王擎, 许祥成, 迟铭书, 张宏喜, 崔达, 柏静儒.干酪根组成结构及其热解生油特性的红外光谱研究[J].燃料化学学报, 2015, 43(10). doi: 10.3969/j.issn.0253-2409.2015.10.017

    WANG Qing, XU Xiang-cheng, CHI Ming-shu, ZHUANG Hong-xi, CUI Da, BAI Jing-ru. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation characteristics[J]. J Fuel Chem Technol, 2015, 43(10). doi: 10.3969/j.issn.0253-2409.2015.10.017
    [2] KUMAR R, BANSAL V, BADHE R M, MADHIRA I S S, SUGUMARAN V, AHMED S, CHRISTOPHER J, PATEL M B, BASU B. Characterization of indian origin oil shale using advanced analytical techniques[J]. Fuel, 2013, 113:610-616. doi: 10.1016/j.fuel.2013.05.055
    [3] GAI R H, JIN L J, ZHANG J B, WANG J Y, HU H Q. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale[J]. J Anal Appl Pyrolysis, 2014, 115:342-347. http://www.sciencedirect.com/science/article/pii/S0165237013002611
    [4] MACIELl G E, BARTUSKA V J, MIKNIS F P. Correlation between oil yields of oil shales and13C nuclear magnetic resonance spectra[J]. Fuel, 1978, 57(8):505-506. doi: 10.1016/0016-2361(78)90163-1
    [5] MIKNIS F P, CONN P J. A common relation for correlating pyrolysis yields of coals and oil shales[J]. Fuel, 1986, 65(2):248-250. doi: 10.1016/0016-2361(86)90014-1
    [6] FREUUD H, WALTERS C C, KELEMEN S R, SISKIN M, GORBATY M L, CURRY D J, BENCE A E. Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM):Part 1-Concepts and implementation[J]. Org Geochem, 2007, 38(2):288-305. doi: 10.1016/j.orggeochem.2006.09.009
    [7] SISKIN M, SCOUTEN C G, ROSE K D, ACZEL T, COLGROVE S G, PABST R E J.Detailed structural characterization of the organic material in rundle ramsay crossing and green river oil shales[J]. Fuel Energy Abstracts, 1996, 37(1):10. doi: 10.1007/978-94-011-0317-6_9
    [8] RU X, CHENG Z Q, SONG L H, WANG H Y, LI J F. Experimental and computational studies on the average molecular structure of Chinese huadian oil shale kerogen[J]. J Mol Struct, 2012, 1030(4):10-18. http://www.sciencedirect.com/science/article/pii/S0022286012006795
    [9] GUAN X H, LIU Y, WANG D, WANG Q, CHI M S, LIU S, LIU C G. Three-dimensional structure of a huadian oil shale kerogen model:An experimental and theoretical study[J]. Energy Fuels, 2015, 29(7):4122-4136. doi: 10.1021/ef502759q
    [10] UNGERER P, COLLELLl J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen:Influence of organic type and maturity[J]. Energy Fuels, 2014, 29(1):91-105. doi: 10.1021/ef502154k?src=recsys&journalCode=enfuem
    [11] GUAN X H, WANG D, WANG Q, CHI M S, LIU C G. Estimation of various chemical bond dissociation enthalpies of large-sized kerogen molecules using DFT methods[J]. Mol Phys, 2016, 114(11):1705-1755. doi: 10.1080/00268976.2016.1143983
    [12] LIU Z Y. Advancement in coal chemistry:structure and reactivity[J]. Sci Sin Chim, 2014, 44(9):1431-1438. doi: 10.1360/N032014-00159
    [13] GUO X J, LIU Z Y, LIU Q Y, SHI L. Modeling of kraft lignin pyrolysis based on bond dissociation and fragments coupling[J]. Fuel Process Technol, 2015, 135:133-149. doi: 10.1016/j.fuproc.2014.12.009
    [14] 茹鑫. 油页岩热解过程分子模拟及实验研究[D]. 长春: 吉林大学, 2013.

    RU Xin. Study on the experiment and molecular simulation of oil shale pyrolysis[D]. Changchun:Jilin University, 2013.
    [15] VANDEGRIFT G F, WINANS R E, SCOTT R G, HORWITZ E P. Quantitative study of the carboxylic acids in Green River oil shale bitumen[J]. Fuel, 1980, 59(9):627-633. doi: 10.1016/0016-2361(80)90124-6
    [16] IBRAHIMOV R A, BISSADA K K A. Comparative analysis and geological significance of kerogen isolated using open-system (palynological) versus chemically and volumetrically conservative closed-system methods[J]. Org Geochem, 2010, 41(8):800-811. doi: 10.1016/j.orggeochem.2010.05.006
    [17] 王擎, 黄宗越, 迟铭书, 石聚欣, 王智超, 隋义.油页岩干酪根化学结构特性分析[J].化工学报, 2015, 66(5):1861-1866. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201505031.htm

    WANG Qing, HUANG Zong-yue, CHI Ming-shu, SHI Ju-xin, WANG Zhi-chao, SUI Yi, Chemical structure analysis of oil shale kerogen[J]. CIESC J, 2015, 66(5):1861-1866. http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201505031.htm
    [18] YEN T F. Structural aspects of organic components in oil shales[J]. Dev Petrol Sci, 1976, 5:129-148. doi: 10.1016/S0376-7361(08)70047-5
    [19] LILLEV, HEINMAA I, PEHK T. Molecular model of Estonian kukersite kerogen evaluated by13C MAS NMR spectra[J]. Fuel, 2003, 82(7):799-804. doi: 10.1016/S0016-2361(02)00358-7
    [20] HUANG Y, HAN X, JIANG X. Characterization of Dachengzi oil shale fast pyrolysis by Curie-point pyrolysis-GC-MS[J]. Oil Shale, 2015, 32(2):134. doi: 10.3176/oil.2015.2.04
    [21] AL-HARAHSHEH A, AL-OTOOM A Y, SHAWABKEH R A. Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale[J]. Energy, 2005, 30(15):2784-2795. http://www.sciencedirect.com/science/article/pii/S0360544205000162
    [22] ZHOU B, SHI L, LIU Q Y, LIU Z Y. Examination of structural models and bonding characteristics of coals[J]. Fuel, 2016, 184:799-807. doi: 10.1016/j.fuel.2016.07.081
    [23] COLLELL J, UNGERER P, GLLIERO G, YIANNOURAKOU M, MONTEL F, PUJOL M. Molecular simulation of bulk organic matter in Type Ⅱ shales in the middle of the oil formation window[J]. Energy Fuels, 2014, 28(12):7457-7466. doi: 10.1021/ef5021632
    [24] ZHANG Z, JAMILI A. Modeling the Kerogen 3D Molecular Structure[C]//SPE/CSUR Unconventional Resources Conference. Society of Petroleum Engineers, 2015.
    [25] BEHAR F, VANDENBROUCKE M. Chemical Modelling of Kerogens[J]. Org Geochem, 1987, 11(1):15-24. doi: 10.1016/0146-6380(87)90047-7
    [26] 秦匡宗, 劳永新.茂名和抚顺油页岩组成结构的研究Ⅱ.有机质的脂碳结构[J].燃料化学学报, 1985, 13(8):193-202.

    QIN Kuang-zong, LAO Yong-xin. Investigation on the constitution and structure of Maoming and Fushun oil shale I:The aliphatic carbon structure of organic matter[J]. J Fuel Chem Technol, 1985, 13(8):193-202.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  50
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-28
  • 修回日期:  2017-06-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-10-10

目录

    /

    返回文章
    返回