留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N2O在Mg-Co和Mg-Mn-Co复合氧化物上的催化分解

郑丽 吴藏藏 徐秀峰

郑丽, 吴藏藏, 徐秀峰. N2O在Mg-Co和Mg-Mn-Co复合氧化物上的催化分解[J]. 燃料化学学报(中英文), 2016, 44(12): 1494-1501.
引用本文: 郑丽, 吴藏藏, 徐秀峰. N2O在Mg-Co和Mg-Mn-Co复合氧化物上的催化分解[J]. 燃料化学学报(中英文), 2016, 44(12): 1494-1501.
ZHENG Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1494-1501.
Citation: ZHENG Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. Journal of Fuel Chemistry and Technology, 2016, 44(12): 1494-1501.

N2O在Mg-Co和Mg-Mn-Co复合氧化物上的催化分解

基金项目: 

山东省重点研发计划 2016GSF117003

烟台大学研究生科技创新基金 GIFYTU

详细信息
  • 中图分类号: O643.3

Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides

More Information
  • 摘要: 用溶胶-凝胶法制备了不同组成的Mg-Co和Mg-Mn-Co复合氧化物,用于催化分解N2O。在较高活性的Mg-Mn-Co表面浸渍K2CO3溶液,制备K改性催化剂。用X射线衍射(XRD)、N2物理吸附(BET)、扫描电镜(SEM)、H2程序升温还原(H2-TPR)、O2程序升温脱附(O2-TPD)等技术表征催化剂结构,考察了复合氧化物的组成、K负载量等制备参数对催化剂活性的影响。结果表明,加入助剂K显著提高了催化剂活性,其中,0.02 K/MgMn0.2Co1.8O4活性较高,有氧无水、有氧有水气氛400℃连续反应50 h,N2O转化率分别保持97%和60%。有水-无水气氛交替实验表明,有水反应后再进行无水实验,K改性催化剂的稳定性较好。
  • 图  1  Mg-Co复合氧化物的XRD谱图

    Figure  1  XRD patterns of Mg-Co composite oxides with different compositions

    a: Co3O4; b: Mg0.2Co2.8O4; c: Mg0.4Co2.6O4; d: Mg0.6Co2.4O4; e: Mg0.8Co2.2O4; f: MgCo2O4

    图  2  Mg-Co复合氧化物上的N2O转化率

    Figure  2  N2O conversions over Mg-Co composite oxides with different compositions

    图  3  Mg-Co复合氧化物的H2-TPR谱图

    Figure  3  H2-TPR profiles of Mg-Co composite oxides with different compositions

    a: Co3O4; b: Mg0.2Co2.8O4; c: Mg0.4Co2.6O4; d: Mg0.6Co2.4O4; e: Mg0.8Co2.2O4; f: MgCo2O4

    图  4  Mg-Co复合氧化物的O2-TPD谱图

    Figure  4  O2-TPD profiles of Mg-Co composite oxides with different compositions

    a: Mg0.2Co2.8O4; b: Mg0.4Co2.6O4; c: Mg0.6Co2.4O4; d: Mg0.8Co2.2O4; e: MgCo2O4

    图  5  Mg-Mn-Co复合氧化物的XRD谱图

    Figure  5  XRD patterns of Mg-Mn-Co composite oxides with different compositions

    a: MgCo2O4; b: MgMn0.2Co1.8O4; c: MgMn0.4Co1.6O4; d: MgMn0.6Co1.4O4; e: MgMn0.8Co1.2O4; f: MgMnCoO4

    图  6  Mg-Mn-Co复合氧化物的SEM照片

    Figure  6  SEM images of Mg-Mn-Co composite oxides with different compositions

    (a): MgCo2O4; (b): MgMn0.2Co1.8O4; (c): MgMn0.6Co1.4O4; (d): MgMnCoO4

    图  7  Mg-Mn-Co复合氧化物的催化活性

    Figure  7  N2O conversions over Mg-Mn-Co composite oxides with different compositions

    图  8  Mg-Mn-Co复合氧化物的H2-TPR谱图

    Figure  8  H2-TPR profiles of Mg-Mn-Co composite oxides with different compositions

    a: MgCo2O4; b: MgMn0.2Co1.8O4; c: MgMn0.4Co1.6O4; d: MgMn0.6Co1.4O4; e: MgMn0.8Co1.2O 4; f: MgMnCoO4

    图  9  Mg-Mn-Co复合氧化物的O2-TPD谱图

    Figure  9  O2-TPD profiles of Mg-Mn-Co composite oxides with different compositions

    a: MgCo2O4; b: MgMn0.2Co1.8O4; c: MgMn0.4Co1.6O4; d: MgMn0.6Co1.4O4; e: MgMn0.8Co1.2O 4; f: MgMnCoO4

    图  10  K/MgMn0.2Co1.8O4催化剂的SEM照片

    Figure  10  SEM images of K/MgMn0.2Co1.8O4 catalysts

    (a): MgMn0.2Co1.8O4; (b): 0.02K/MgMn0.2Co1.8O4

    图  11  K/MgMn0.2Co1.8O4催化剂的催化活性

    Figure  11  N2O conversions over K/MgMn0.2Co1.8O4 catalysts

    图  12  K/MgMn0.2Co1.8O4催化剂的H2-TPR谱图

    Figure  12  H2-TPR profiles of K/MgMn0.2Co1.8O4 catalysts

    a: MgMn0.2Co1.8O4; b: 0.01K/MgMn0.2Co1.8O4; c: 0.02K/MgMn0.2Co1.8O4; d: 0.03K/MgMn0.2Co1.8O4; e: 0.04K/MgMn0.2Co1.8O4; f: 0.05K/MgMn0.2Co1.8O4

    图  13  不同气氛中0.02K/MgMn0.2Co1.8O4 催化剂的稳定性

    Figure  13  Catalytic stability of 0.02 K/MgMn0.2Co1.8O4 for N2O decomposition at 400℃ under various atmospheres

    ■: MgMn0.2Co1.8O4 (O2); ●:MgMn0.2Co1.8O4(O2+H2O);▲: 0.02K/MgMn0.2Co1.8O4(O2); ▼: 0.02K/MgMn0.2Co1.8O4(O2+H2O)

    图  14  0.02K/MgMn0.2Co1.8O4催化剂无水-有水交替反应的催化活性

    Figure  14  Catalytic activity of 0.02K/MgMn0.2Co1.8O4 for N2O decomposition at 400℃ under oxygen-only or oxygen-steam atmospheres

    表  1  Mg-Co复合氧化物的晶粒粒径和比表面积

    Table  1  Crystallite size and BET surface area of Mg-Co composite oxides

    Catalyst Crystallite size
    d/nma
    BET surface area
    A/(m2·g-1)
    Co3O4 113.4 4.0
    Mg0.2Co2.8O4 85.0 8.4
    Mg0.4Co2.6O4 66.1 13.0
    Mg0.6Co2.4O4 104.4 18.8
    Mg0.8Co2.2O4 74.1 16.8
    MgCo2O4 58.8 20.1
    acalculated by Scherrer equation on the basis of (311) crystallographic plane data in XRD patterns
    下载: 导出CSV

    表  2  Mg-Mn-Co复合氧化物的晶粒粒径和比表面积

    Table  2  Crystallite size and BET Surface area of Mg-Mn-Co composite oxides

    Catalyst Crystallite size
    d/nma
    BET surface area
    A/(m2·g-1)
    MgCo2O4 58.8 20.1
    MgMn0.2Co1.8O4 17.6 75.0
    MgMn0.4Co1.6O4 7.8 77.7
    MgMn0.6Co1.4O4 8.6 81.0
    MgMn0.8Co1.2O4 16.0 72.4
    MgMnCoO4 11.9 73.3
    a calculated by Scherrer equation on the basis of (311) crystallographic plane data in XRD patterns
    下载: 导出CSV

    表  3  K/MgMn0.2Co1.8O4催化剂的晶粒粒径和比表面积

    Table  3  Crystallite size and BET surface area of K/MgMn0.2Co1.8O4 catalysts

    Catalyst Crystallite size
    d/nma
    BET surface area
    A/(m2·g-1)
    MgMn0.2Co1.8O4 17.6 75.0
    0.01K/MgMn0.2Co1.8O4 21.2 60.8
    0.02K/MgMn0.2Co1.8O4 33.6 54.6
    0.03K/MgMn0.2Co1.8O4 25.4 45.7
    0.04K/MgMn0.2Co1.8O4 24.7 56.8
    0.05K/MgMn0.2Co1.8O4 27.0 44.9
    a calculated by Scherrer equation on the basis of (311) crystallographic plane data in XRD patterns
    下载: 导出CSV
  • [1] PIETROGIACOMI D,CAMPA M C,CARBONE L R,TUTI S,OCCHIUZZI M.N2O decomposition on CoOx,CuOx,FeOx or MnOx supported on ZrO2:The effect of zirconia doping with sulfates or K+ on catalytic activity[J].Appl Catal B:Environ,2016,187:218-227. doi: 10.1016/j.apcatb.2016.01.018
    [2] ASANO K,OHNISHI C,IWAMOTO S,SHIOYA Y,INOUE M.Potassium-doped Co3O4 catalyst for direct decomposition of N2O[J].Appl Catal B:Environ,2008,78(3/4):242-249.
    [3] XUE L,ZHANG C B,HE H,TERAOKA Y.Promotion effect of residual K on the decomposition of N2O over cobalt-cerium mixed oxide catalyst[J].Catal Today,2007,126(3/4):449-455.
    [4] HUSSAIN M,FINO D,RUSSO N.N2O decomposition by mesoporous silica supported Rh catalysts[J].J Hazard Mater,2012,211-212:255-265. doi: 10.1016/j.jhazmat.2011.08.024
    [5] KLYUSHINA A,PACULTOVÁK,KREJČOVÁS,SLOWIK G,JIRÁTOVÁK,KOVANDA F,RYCZKOWSKI J,OBALOVÁL.Advantages of stainless steel sieves as support for catalytic N2O decomposition over K-doped Co3O4[J].Catal Today,2015,257(1):2-10.
    [6] ZABILSKIY M,DJINOVĆ P,ERJAVEC B,DRAŽĆG,PINTAR A.Small CuO clusters on CeO2 nanospheres as active species for catalytic N2O decomposition[J].Appl Catal B:Environ,2015,163:113-122. doi: 10.1016/j.apcatb.2014.07.057
    [7] AMROUSSE R,KATSUMI T.Substituted ferrite MxFe1-xFe2O4(M=Mn,Zn) catalysts for N2O catalytic decomposition processes[J].Catal Commun,2012,26:194-198. doi: 10.1016/j.catcom.2012.05.024
    [8] KUMAR S,VINU A,SUBBRT J,BAKARDJIEVA S,RAYALU S,TERAOKA Y,LABHSETWAR N.Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control[J].Catal Today,2012,198(1):125-132. doi: 10.1016/j.cattod.2012.06.015
    [9] XUE Z W,SHEN Y S,SHEN S B,LI C L,ZHU S M.Promotional effects of Ce4+,La3+ and Nd3+ incorporations on catalytic performance of Cu-Fe-Ox for decomposition of N2O[J].J Ind Eng Chem,2015,30:98-105. doi: 10.1016/j.jiec.2015.05.008
    [10] LIN Y,MENG T,MA Z.Catalytic decomposition of N2O over RhOx supported on metal phosphates[J].J Ind Eng Chem,2015,28:138-146. doi: 10.1016/j.jiec.2015.02.009
    [11] DACQUIN J P,DUJARDIN C,GRANGER P.Surface reconstruction of supported Pd on LaCoO3:Consequences on the catalytic properties in the decomposition of N2O[J].J Catal,2008,253(1):37-49. doi: 10.1016/j.jcat.2007.10.023
    [12] BEYER H,EMMERICH J,CHATZIAPOSTOLOU K,KÖHLER K.Decomposition of nitrous oxide by rhodium catalysts:Effect of rhodium particle size and metal oxide support[J].Appl Catal A:Gen,2011,391(1/2):411-416. https://www.researchgate.net/publication/244108871_Decomposition_of_nitrous_oxide_by_rhodium_catalysts_Effect_of_rhodium_particle_size_and_metal_oxide_support?_sg=Rfvd1ymI19OYOXGNk-833LB0G7yeMc9b4Pax8SHTMg6hfSirheDn3UcS9w6w5-GQwyDaXPzjjJ2bRfzdZ3tidA
    [13] PACHATOURIDOU E,PAPISTA E,DELIMITIS A,VASILIADES M A,EFSTATHIOU A M,AMIRIDIS M D,ALEXEEV O S,BLOOM D,MAMELLOS G E,KONSOLAKIS M,ILIOPOULOU E.N2O decomposition over ceria-promoted Ir/Al2O3 catalysts:The role of ceria[J].Appl Catal B:Environ,2016,187:259-268. doi: 10.1016/j.apcatb.2016.01.049
    [14] BERRIER E,OVSITSER O,KONDRATENKO E V,SCHWIDDER M,GRÜNERT W,BRÜCKNER A.Temperature-dependent N2O decomposition over Fe-ZSM-5:Identification of sites with different activity[J].J Catal,2007,249(1):67-78. doi: 10.1016/j.jcat.2007.03.027
    [15] CÜRDANELI P E,ÖZKAR S.Ruthenium (Ⅲ) ion-exchanged zeolite Y as highly active and reusable catalyst in decomposition of nitrous oxide to sole nitrogen and oxygen[J].Microporous Mesoporous Mater,2014,196:51-58. doi: 10.1016/j.micromeso.2014.04.052
    [16] MENG T,REN N,MA Z.Silicalite-1@Cu-ZSM-5 core-shell catalyst for N2O decomposition[J].J Mol Catal A:Chem,2015,404-405:233-239. doi: 10.1016/j.molcata.2015.05.006
    [17] YAN L,REN T,WANG X L,GAO Q,JI D,SUO J S.Excellent catalytic performance of ZnxCo1-xCo2O4 spinel catalysts for the decomposition of nitrous oxide[J].Catal Commun,2003,4(10):505-509. doi: 10.1016/S1566-7367(03)00131-6
    [18] YAN L,REN T,WANG X L,JI D,SUO J S.Catalytic decomposition of N2O over MxCo1-xCo2O4(M=Ni,Mg) spinel oxides[J].Appl Catal B:Environ,2003,45(2):85-90. doi: 10.1016/S0926-3373(03)00174-7
    [19] ABU-ZIED B M,SOLIMAN S A,ABDELLAH S E.Pure and Ni-substituted Co3O4 spinel catalysts for direct N2O decomposition[J].Chin J Catal,2014,35(7):1105-1112. doi: 10.1016/S1872-2067(14)60058-9
    [20] MANIAK G,STELMACHOWSKI P,STANEK J J,KOTARBA A,SOJKA Z.Catalytic properties in N2O decomposition of mixed cobalt-iron spinels[J].Catal Commun,2011,15(1):127-131. doi: 10.1016/j.catcom.2011.08.027
    [21] 窦喆,张海杰,潘燕飞,徐秀峰.N2O在钾改性Cu-Co尖晶石型复合氧化物上的催化分解[J].燃料化学学报,2014,42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5

    DOU Zhe,ZHANG Hai-jie,PAN Yan-fei,XU Xiu-feng.Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides[J].J Fuel Chem Technol,2014,42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5
    [22] 王建,窦喆,潘燕飞,徐秀峰.MnxCo3-xO4复合氧化物及改性催化剂催化分解N2O[J].分子催化,2015,29(3):246-255.

    WANG Jian,DOU Zhe,PAN Yan-fei,XU Xiu-feng.MnxCo3-xO4 composite oxide and modified catalyst catalytic decomposition of N2O[J].J Mol Catal (China),2015,29(3):246-255.
    [23] CHELLAM U,XU Z P,ZENG H C.Low-temperature synthesis of MgxCo1-xCo2O4 spinel catalysts for N2O decomposition[J].Chem Mater,2000,12:650-658. doi: 10.1021/cm990355l
    [24] KUBOŇOVÁL,FRIDRICHOVÁD,WACH A,KUŚTROWSKR P,OBALOVÁL,COOL P.Catalytic activity of rhodium grafted on ordered mesoporous silicamaterials modified with aluminum in N2O decomposition[J].Catal Today,2015,257:51-58. doi: 10.1016/j.cattod.2015.03.019
    [25] PRRUTKO L V,CHERNYAVSKY V S,STAROKON E V,IVANOV A A,KHARITONOV A S,PANOV G.The role of a-sites in N2O decomposition over FeZSM-5.Comparison with the oxidation of benzene to phenol[J].Appl Catal B:Environ,2009,91(1/2):174-179.
    [26] 吴藏藏,张海杰,王建,郑丽,徐秀峰.N2O分解催化剂Co-Al尖晶石型复合氧化物制备参数的优化[J].分子催化,2016,30(1):62-71.

    WU Cang-cang,ZHANG Hai-jie,WANG Jian,ZHENG Li,XU Xiu-feng.The preparation parameters screening of Co-Al spinel oxides for N2O catalytic decomposition[J].J Mol Catal (China),2016,30(1):62-71.
    [27] AMROUSSE R,TSUTSUMI A,BACHAR A,LAHCENE D.N2O catalytic decomposition over nano-sized particles of Co-substituted Fe3O4 substrates[J].Appl Catal A:Gen,2013,450:253-260. doi: 10.1016/j.apcata.2012.10.036
    [28] FRANKEN T,PALKOVITS R.Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J].Appl Catal B:Environ,2015,176-177:298-305. doi: 10.1016/j.apcatb.2015.04.002
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  24
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-17
  • 修回日期:  2016-10-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-12-10

目录

    /

    返回文章
    返回