留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ho改性Fe-Mn/TiO2低温SCR脱硝催化剂硫中毒及热还原再生研究

庄柯 张亚平 黄天娇 陆斌 沈凯

庄柯, 张亚平, 黄天娇, 陆斌, 沈凯. Ho改性Fe-Mn/TiO2低温SCR脱硝催化剂硫中毒及热还原再生研究[J]. 燃料化学学报(中英文), 2017, 45(11): 1356-1364.
引用本文: 庄柯, 张亚平, 黄天娇, 陆斌, 沈凯. Ho改性Fe-Mn/TiO2低温SCR脱硝催化剂硫中毒及热还原再生研究[J]. 燃料化学学报(中英文), 2017, 45(11): 1356-1364.
ZHUANG Ke, ZHANG Ya-ping, HUANG Tian-jiao, LU Bin, SHEN Kai. Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1356-1364.
Citation: ZHUANG Ke, ZHANG Ya-ping, HUANG Tian-jiao, LU Bin, SHEN Kai. Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1356-1364.

Ho改性Fe-Mn/TiO2低温SCR脱硝催化剂硫中毒及热还原再生研究

基金项目: 

江苏省重点研发计划项目 BE2015677

环保公益性行业科研项目 2016YFC0208102

详细信息
  • 中图分类号: X701.7

Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2 catalyst for low-temperature SCR

Funds: 

the Key Research Program of Jiangsu Province BE2015677

Environmental Nonprofit Industry Research Subject 2016YFC0208102

More Information
  • 摘要: 以Ho改性Fe-Mn/TiO2低温SCR脱硝催化剂为研究对象,通过活性评价和一系列表征技术对其低温抗硫性能和催化剂的热还原再生进行研究。结果表明,硫酸铵((NH42SO4)在催化剂表面的沉积以及活性组分硫酸化(MnSO4)是催化剂硫中毒的主要原因。当烟气中的SO2体积分数低于0.04%时,Fe0.3Ho0.1Mn0.4/TiO2催化剂呈现出良好的抗硫性。在此条件下,当切断SO2的供应时催化剂的脱硝活性可获得显著恢复。当通入的SO2体积分数增加至0.1%时,催化剂会发生不可逆失活。在体积分数5% NH3气氛下,失活催化剂经过350 ℃的热还原再生处理60 min后,其微观结构和理化性质能够得到明显恢复,且NOx转化率可以回升至80%左右。
  • 图  1  不同浓度SO2对Fe0.3Ho0.1Mn0.4/TiO2催化剂脱硝性能的影响

    Figure  1  SCR activity of Fe0.3Ho0.1Mn0.4/TiO2 catalyst with different SO2 content

    (t=120 ℃, [NH3]=[NO] = 0.08%, [O2]=5%, N2 balanced, GHSV=20 000 h-1)—■—: 0.02% SO2; —●—: 0.04% SO2; —▲—: 0.06% SO2

    图  2  不同还原温度对Fe0.3Ho0.1Mn0.4/TiO2催化剂热再生性能的影响

    Figure  2  SCR activity of regenerated Fe0.3Ho0.1Mn0.4/TiO2 catalyst with different regeneration temperature

    (t=120 ℃, N2 balanced, GHSV=4 000 h-1)

    图  3  不同还原温度对Fe0.3Ho0.1Mn0.4/TiO2催化剂再生性能的影响

    Figure  3  SCR activity of regenerated Fe0.3Ho0.1Mn0.4/TiO2 catalyst with different regeneration temperature

    (t=120 ℃, [NH3]=[NO]=0.08%, [O2]=5%, N2 balanced, GHSV=4 000 h-1)

    图  4  不同还原时间对Fe0.3Ho0.1Mn0.4/TiO2催化剂再生性能的影响

    Figure  4  SCR activity of regenerated Fe0.3Ho0.1Mn0.4/TiO2 catalyst with different regeneration time

    (t=120 ℃, [NH3]=[NO] = 0.08%, [O2]=5%, N2 balanced, GHSV=4 000 h-1)

    图  5  Fe0.3Ho0.1Mn0.4/TiO2催化剂再生前后的XRD谱图

    Figure  5  XRD partters of catalysts with fresh, deactivated and regenerated catalysts

    a: fresh Fe0.3Ho0.1Mn0.4/TiO2; b: deactivated Fe0.3Ho0.1Mn0.4/TiO2; c: regenerated Fe0.3Ho0.1Mn0.4/TiO2

    图  6  Fe0.3Ho0.1Mn0.4/TiO2催化剂再生前后的SEM照片

    Figure  6  SEM spectra of fresh, deactivated and regenerated catalysts

    (a): fresh Fe0.3Ho0.1Mn0.4/TiO2; (b): deactivated Fe0.3Ho0.1Mn0.4/TiO2; (c): regenerated Fe0.3Ho0.1Mn0.4/TiO2

    图  7  Fe0.3Ho0.1Mn0.4/TiO2催化剂再生前后的H2-TPR谱图

    Figure  7  H2-TPR of fresh, deactivated and regenerated catalysts

    a: fresh Fe0.3Ho0.1Mn0.4/TiO2; b: deactivated Fe0.3Ho0.1Mn0.4/TiO2; c: regenerated Fe0.3Ho0.1Mn0.4/TiO2

    图  8  Fe0.3Ho0.1Mn0.4/TiO2催化剂再生前后的NH3-TPD谱图

    Figure  8  NH3-TPD of fresh, deactivated and regenerated catalysts

    a: fresh Fe0.3Ho0.1Mn0.4/TiO2; b: deactivated Fe0.3Ho0.1Mn0.4/TiO2; c: regenerated Fe0.3Ho0.1Mn0.4/TiO2

    图  9  Fe0.3Ho0.1Mn0.4/TiO2催化剂再生前后的in situ DRIFTS谱图

    Figure  9  in situ DRIFTS spectra of fresh, deactivated and regenerated catalysts

    (a): fresh Fe0.3Ho0.1Mn0.4/TiO2; (b): deactivated Fe0.3Ho0.1Mn0.4/TiO2; (c): regenerated Fe0.3Ho0.1Mn0.4/TiO2 a: 40 ℃; b: 60 ℃; c: 80 ℃; d: 100 ℃; e: 120 ℃; f: 140 ℃; j: 160 ℃; h: 180 ℃; i: 200 ℃; g: 220 ℃

    表  1  Fe0.3Ho0.1Mn0.4/TiO2催化剂再生前后的BET比表面积和孔容孔径

    Table  1  BET surface areas and pore parameters of fresh, deactivated and regenerated catalysts

    Catalyst ABET /(m2·g-1) Total pore volume v/(cm3·g-1) Average pore width d/nm
    Fresh Fe0.3Ho0.1Mn0.4/TiO2 95 0.28 11.99
    Deactivated Fe0.3Ho0.1Mn0.4/TiO2 5 0.23 174.34
    Regenerated Fe0.3Ho0.1Mn0.4/TiO2 49 0.41 33.11
    下载: 导出CSV

    表  2  Fe0.3Ho0.1Mn0.4/TiO2催化剂再生前后的XRF表征

    Table  2  XRF results of fresh, deactivated and regenerated catalysts

    Sample Element content w/%
    Ti Mn Ho Fe S N
    Fresh Fe0.3Ho0.1Mn0.4/TiO2 24.10 13.64 9.86 9.77 0.12 0.00
    Deactivated Fe0.3Ho0.1Mn0.4/TiO2 17.46 9.50 6.94 7.05 9.76 8.81
    Regenerated Fe0.3Ho0.1Mn0.4/TiO2 23.41 13.16 9.26 9.40 0.80 0.00
    下载: 导出CSV

    表  3  Fe0.3Ho0.1Mn0.4/TiO2催化剂再生前后的H2-TPR图谱分析

    Table  3  H2-TPR analysis results of fresh, deactivated and regenerated catalysts

    Sample Reduction peak area Peak area ratio H2/Mn(mol ratio)
    total Ⅰ/Ⅱ Ⅱ/Ⅲ total
    Fresh Fe0.3Ho0.1Mn0.4/TiO2 1 973 1 795 995 4 763 1.10 1.80 0.94 0.86 0.48 2.28
    Deactivated Fe0.3Ho0.1Mn0.4/TiO2 944 1 653 216 2 813 0.57 7.65 0.45 0.79 0.10 1.34
    Regenerated Fe0.3Ho0.1Mn0.4/TiO2 1 990 1 832 528 4 350 1.08 3.47 0.95 0.88 0.25 2.08
    下载: 导出CSV

    表  4  Fe0.3Ho0.1Mn0.4/TiO2催化剂再生前后的NH3-TPD图谱分析

    Table  4  NH3-TPD analysis results of fresh, deactivated and regenerated catalysts

    Sample NH3 desorption peak area
    weak acid
    ( < 300 ℃)
    dium-strong acid
    (300-500 ℃)
    strong acid
    ( > 500 ℃)
    total
    Fresh Fe0.3Ho0.1Mn0.4/TiO2 6 621 6 539 6 126 19 286
    Deactivated Fe0.3Ho0.1Mn0.4/TiO2 2 741 2 973 2 433 8 147
    Regenerated Fe0.3Ho0.1Mn0.4/TiO2 7 795 4 402 4 062 16 259
    下载: 导出CSV
  • [1] SHEN B, LIU T, ZHAO N, YANG X, DENG L. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. J Environ Sci-China, 2010, 22(9):1447-1454. doi: 10.1016/S1001-0742(09)60274-6
    [2] JIANG B, DENG B, ZHANG Z, WU Z, TANG X, YAO S, LU H. Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe-Mn/Ti catalysts[J]. J Phys Chem C, 2014, 118(27):14866-14875. doi: 10.1021/jp412828p
    [3] KIJLSTRA W S, BIERVLIET M, POELS E K, BLIEK A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B:Environ, 1998, 16(4):327-337. doi: 10.1016/S0926-3373(97)00089-1
    [4] 范芸珠, 曹发海.硫酸铵热分解反应动力学研究[J].高校化学工程学报, 2011, (02):341-346. http://d.wanfangdata.com.cn/Periodical/gxhxgcxb201102028

    FAN Yun-zhu, CAO Fa-hai. Thermal decomposition kinetics of ammonium sulfate[J]. J Chem Eng Chin Univ, 2011, (02):341-346. http://d.wanfangdata.com.cn/Periodical/gxhxgcxb201102028
    [5] QI G S, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Appl Catal B:Environ, 2003, 44(3):217-225. doi: 10.1016/S0926-3373(03)00100-0
    [6] 黄海凤, 俞河, 张峰, 周小燕, 卢晗锋.低温NH3选择性催化还原脱硝催化剂Mn1FexCe(1-x)/TiO2抗硫再生性能研究[J].中国电机工程学报, 2011, 31(35):29-34. http://d.wanfangdata.com.cn/Periodical/zgdjgcxb201135007

    HUANG Hai-feng, YU He, ZHANG Feng, ZHOU Xiao-yan, LU Han-feng. Study on the sulfur tolerance and regeneration of Mn1FexCe1-x/TiO2 catalyst for low temperature NH3-selective catalytic reduction[J]. Proc CSEE, 2011, 31(35):29-34. http://d.wanfangdata.com.cn/Periodical/zgdjgcxb201135007
    [7] HUANG J, TONG Z, HUANG Y, ZHANG J. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J]. Appl Catal B:Environ, 2008, 78(3/4):309-314. http://www.sciencedirect.com/science/article/pii/S0926337307003062
    [8] LIU F, HE H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst:Reaction mechanism and H2O/SO2 inhibition mechanism study[J]. Catal Today, 2010, 153(3/4):70-76. http://www.sciencedirect.com/science/article/pii/S0920586110001288
    [9] JIANG B Q, WU Z B, LIU Y, LEE S C, HO W K. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2[J]. J Phys Chem C, 2010, 114(11):4961-4965. doi: 10.1021/jp907783g
    [10] 马建蓉, 黄张根, 刘振宇, 郭士杰.再生方法对V2O5/AC催化剂同时脱硫脱硝活性的影响[J].催化学报, 2005, 26(6):463-469. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chua200506008&dbname=CJFD&dbcode=CJFQ

    MA Jian-rong, HUANG Zhang-gen, LIU Zhen-yu, GUO Shi-jie. Effect of regeneration method on activity for simultaneous removal of SO2 and NO over V2O5/AC catalyst-sorbent[J]. Chin J Catal, 2005, 26(6):463-469. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chua200506008&dbname=CJFD&dbcode=CJFQ
    [11] SHI Y, SHU H, ZHANG Y, FAN H, ZHANG Y, YANG L. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts[J]. Fuel Process Technol, 2016, 150:141-147. doi: 10.1016/j.fuproc.2016.05.016
    [12] 杨超, 程华, 黄碧纯.抗SO2和H2O中毒的低温NH3-SCR脱硝催化剂研究进展[J].化工进展, 2014, 33(4):907-913. http://www.cqvip.com/QK/95836X/201404/72717490504849524852485054.html

    YANG Chao, CHENG Hua, HUANG Bi-chun. Review of de NOx catalysts with SO2 and H2O poisoning resistance for low-temperature NH3-SCR[J]. Chem Ind Eng Prog, 2014, 33(4):907-913. http://www.cqvip.com/QK/95836X/201404/72717490504849524852485054.html
    [13] ZHU Z P, NIU H X, LIU Z Y, LIU S J. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J]. J Catal, 2000, 195(2):268-278. doi: 10.1006/jcat.2000.2961
    [14] XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys Chem C, 2009, 113(11):4426-4432. doi: 10.1021/jp8088148
    [15] ZHANG L, LI L, CAO Y, YAO X, GE C, GAO F, DENG Y, TANG C, DONG L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2015, 165:589-598. doi: 10.1016/j.apcatb.2014.10.029
    [16] HUANG J, TONG Z, HUANG Y, ZHANG J. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J]. Appl Catal B:Environ, 2008, 78(3/4):309-314. http://www.sciencedirect.com/science/article/pii/S0926337307003062
    [17] TOPSOE N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy[J]. Science, 1994, 265(5176):1217-1219. doi: 10.1126/science.265.5176.1217
    [18] RAMIS G, YI L, BUSCA G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study[J]. Catal Today, 1996, 28(4):373-380. doi: 10.1016/S0920-5861(96)00050-8
    [19] TSYGANENKO A A, POZDNYAKOV D V, FILIMONOV V N. Infrared study of surface species arising from ammonia adsorption on oxide surfaces[J]. J Mol Struct, 1975, 291(2):299-318. http://www.sciencedirect.com/science/article/pii/0022286075850381
    [20] LIETTI L, RAMIS G, BERTI F, TOLEDO G, ROBBA D, BUSCA G, FORZATTI P. Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts[J]. Catal Today, 1998, 42(1/2):101-116. http://www.sciencedirect.com/science/article/pii/S0920586198000819
    [21] MATRALIS H K, CIARDELLI M, RUWET M, GRANGE P. Vanadia catalysts supported on mixed TiO2-Al2O3 supports:Effect of composition on the structure and acidity[J]. J Catal, 1995, 157(2):368-379. doi: 10.1006/jcat.1995.1302
    [22] ZHANG Y, GUO W, WANG L, SONG M, YANG L, SHEN K, XU H, ZHOU C. Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx[J]. Chin J Catal, 2015, 37(10):1701-1710. http://www.sciencedirect.com/science/article/pii/S1872206714609160
    [23] LONG R Q, YANG R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts[J]. J Catal, 1999, 186(2):254-268. doi: 10.1006/jcat.1999.2558
    [24] LARRUBIA M A, RAMIS G, BUSCA G. An FT-IR study of the adsorption of urea and ammonia over V2O5-MoO3-TiO2 SCR catalysts[J]. Appl Catal B:Environ, 2000, 27(3):L145-L151. doi: 10.1016/S0926-3373(00)00150-8
    [25] GUTIERREZ-ALEJANDRE A, RAMIREZ J, BUSCA G. A vibrational and spectroscopic study of WO3/TiO2-Al2O3 catalyst precursors[J]. Langmuir, 1998, 14(3):630-639. doi: 10.1021/la970993n
    [26] 罗红成, 黄碧纯, 付名利, 吴军良, 叶代启. MnOx/MWCNTs低温氨选择性催化还原NOx硫中毒机理[J].物理化学学报, 2012(09):2175-2182. doi: 10.3866/PKU.WHXB201207062

    LUO Hong-cheng, HUANG Bi-chun, FU Ming-li, WU Jun-liang, YE Dai-qi. SO2 Deactivation mechanism of MnOx/MWCNTs catalyst for low-temperature selective catalytic reduction of NOx by ammonia[J]. Acta Phys-Chim Sin, 2012(09):2175-2182. doi: 10.3866/PKU.WHXB201207062
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  40
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-17
  • 修回日期:  2017-08-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-11-10

目录

    /

    返回文章
    返回