留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载体物化性质对锰铈催化剂NH3-SCR脱硝性能的影响

乔南利 杨忆新 刘清龙 宋焕巧 禹耕之 罗明生

乔南利, 杨忆新, 刘清龙, 宋焕巧, 禹耕之, 罗明生. 载体物化性质对锰铈催化剂NH3-SCR脱硝性能的影响[J]. 燃料化学学报(中英文), 2018, 46(6): 733-742.
引用本文: 乔南利, 杨忆新, 刘清龙, 宋焕巧, 禹耕之, 罗明生. 载体物化性质对锰铈催化剂NH3-SCR脱硝性能的影响[J]. 燃料化学学报(中英文), 2018, 46(6): 733-742.
QIAO Nan-li, YANG Yi-xin, LIU Qing-long, SONG Huan-qiao, YU Geng-zhi, LUO Ming-sheng. Influence of different supports on the physicochemical properties and denitration performance of the supported MnCe-based catalysts for NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 733-742.
Citation: QIAO Nan-li, YANG Yi-xin, LIU Qing-long, SONG Huan-qiao, YU Geng-zhi, LUO Ming-sheng. Influence of different supports on the physicochemical properties and denitration performance of the supported MnCe-based catalysts for NH3-SCR[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 733-742.

载体物化性质对锰铈催化剂NH3-SCR脱硝性能的影响

基金项目: 

国家自然科学基金 21676027

燃料清洁化及高效催化减排技术北京市重点实验室 BZ041420180006

详细信息
  • 中图分类号: X511

Influence of different supports on the physicochemical properties and denitration performance of the supported MnCe-based catalysts for NH3-SCR

Funds: 

the National Natural Science Foundation of China 21676027

Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology BZ041420180006

More Information
  • 摘要: 选取TiO2、SAPO-34、Al2O3三种常用载体,通过浸渍法以Mn-Ce-O为活性组分制备了负载型MnCeOx脱硝催化剂。采用XRD、BET、H2-TPR、XPS、Py-FTIR等手段对催化剂的固相结构、比表面积、还原性能、表面元素及酸量进行表征分析。结果表明,MnCeOx/SAPO-34催化剂具有最大的比表面积(439.87 m2/g),酸量适中,还原性能最差;MnCeOx/Al2O3催化剂中Mn4+、Ce3+所占比例较高,但酸性最弱;MnCeOx/TiO2催化剂还原性能最优,表面Mn、Ce元素浓度最高,并具有大量Lewis酸性位。通过气固相催化反应装置对催化剂性能进行了NH3-SCR脱硝评价,结果表明,MnCeOx/TiO2催化剂具有较好的脱硝性能,反应温度为280 ℃时,NO转化率达100%(空速为42000 h-1);与催化剂物化性质对比分析,催化剂的氧化还原能力和Lewis酸性位对其脱硝性能至关重要。
  • 图  1  多气路混合固定床反应器装置示意图

    Figure  1  Equipment for the evaluation of the catalyst activity

    图  2  催化剂的XRD谱图

    Figure  2  XRD patterns of the catalysts

    图  3  催化剂的N2吸附-脱附等温线和孔径分布

    Figure  3  N2 adsorption-desorption isotherms and pore size distribution curves of the catalysts

    图  4  催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of the catalysts

    图  5  催化剂Mn 2p、Ce 3d和O 1s轨道XPS谱图

    Figure  5  Mn 2p(a), Ce 3d(b) and O 1s(c) XPS spectra of the catalysts

    图  6  催化剂的Py-FTIR谱图

    Figure  6  Py-FTIR spectra of the catalysts

    图  7  催化剂的脱硝活性评价

    Figure  7  Catalytic performance of the catalysts

    图  8  NH3氧化活性评价

    Figure  8  Evaluation curves of NH3 oxidation

    表  1  催化剂的结构特征

    Table  1  Structural parameters of the catalysts

    Sample Specific surface area A/ (m2·g-1) Mean pore diameter d/nm Total pore volume v/(cm3·g-1)
    TiO2 108.72 20.68 0.59
    MnCeOx/TiO2 101.21 21.39 0.54
    SAPO-34 479.32 1.59 0.49
    MnCeOx/SAPO-34 439.87 2.13 0.23
    Al2O3 230.15 14.56 0.93
    MnCeOx/Al2O3 223.57 15.21 0.85
    下载: 导出CSV

    表  2  催化剂表面原子浓度及比例

    Table  2  Atomic concentration and ratio of the catalysts

    Catalyst Atomic concentration w/% Atomic ratio /%
    Mn Ce Mn2+/Mnn+ Mn3+/Mnn+ Mn4+/Mnn+ Ce3+/Cen+
    MnCeOx/TiO2 1.96 2.32 10.91 50.97 38.11 18.69
    MnCeOx/SAPO-34 1.02 1.11 32.23 36.51 31.25 15.12
    MnCeOx/Al2O3 0.53 0.78 16.41 35.07 48.51 20.97
    下载: 导出CSV

    表  3  催化剂表面B酸和L酸分布及浓度

    Table  3  Concentration of pyridine on Brønsted (B) and Lewis acid (L) sites

    Sample 100 ℃ /(mmol·g-1) 200 ℃ /(mmol·g-1) 300 ℃ /(mmol·g-1)
    B L B L B L
    MnCeOx/TiO2 0.009 0.184 0.006 0.134 0.002 0.087
    MnCeOx/SAPO-34 0.018 0.069 0.009 0.025 0.003 0.005
    MnCeOx/Al2O3 0 0.058 0 0.039 0 0.013
    下载: 导出CSV
  • [1] BUSCA G, LIETT L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts[J]. Appl Catal B:Environ, 1998, 18(1):1-36. https://www.researchgate.net/publication/298897586_Cation_synergies_affect_ammonia_adsorption_over_VOX_and_VWOX_dispersed_on_a-Al2O3_0001_and_a-Fe2O3_0001
    [2] QI G S, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B:Environ, 2004, 51(2):93-106. doi: 10.1016/j.apcatb.2004.01.023
    [3] DJERAD S, TIFOUTI L, CROCOLL M, WEISWEILER W. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts[J]. J Mol Catal A:Chem, 2004, 208(1):257-265. https://www.sciencedirect.com/science/article/pii/S1381116903005545
    [4] XUE J J, WANG X Q, QI G S, WANG J, SHENG M Q, LI W. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia:Relationships between active Cu sites and de-NOx performance at low temperature[J]. J Catal, 2013, 297(1):56-64 https://www.sciencedirect.com/science/article/pii/S0021951712002990
    [5] FANG D, XIE J L, MEI D, ZHANG Y M, HE F, LIU X Q, LI Y M. Effect of CuMn2O4 spinel in Cu-Mn oxide catalysts on selective catalytic reduction of NOx with NH3 at low temperature[J]. RSC Adv, 2014, 4(49):25540-25551. doi: 10.1039/c4ra02824d
    [6] CAO F, SU S, XIANG J, WANG P Y, HU S, SUN L S, ZHANG A C. The activity and mechanism study of Fe-Mn-Ce/gamma-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel, 2015, 139(1):232-239.
    [7] TIAN W, YANG H S, FAN X Y, ZHANG X B. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature[J]. J Hazard Mater, 2011, 188(1/3):105-109 http://downloads.hindawi.com/journals/jnm/2016/6201546.xml
    [8] SJOERD KIJLSTRA W, BIERVLIET M, POELS E D, BLIEK A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B:Environ, 1998, 16(1):327-337. http://downloads.hindawi.com/journals/jnp/2015/601941.xml
    [9] WANG L S, HUANG B C, SU Y X, ZHOU G Y, WANG K L, LUO H C. Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3:Catalytic activity and characterization[J]. Chem Eng J, 2012, 192(1):232-241.
    [10] JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. J Hazard Mater, 2009, 162(2/3):1249-1254. http://downloads.hindawi.com/journals/jchem/2017/2937108.xml
    [11] FANG D, HE F, MEI D, ZHANG Z, XIE J L, HU H. Thermodynamic calculation for the activity and mechanism of Mn/TiO2 catalyst doped transition metals for SCR at low temperature[J]. Catal Commun, 2014, 52(5):45-48.
    [12] THIRUPATHI B, SMIRNIOTIS P G. Co-doping a metal (Cr, Fe, Ni, Cu, Zn, Ce and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperature[J]. Appl Catal B:Environ, 2011, 110(2):195-206.
    [13] WU Z B. JIN R B, WANG H Q, LIU Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J]. Catal Commun, 2007, 10(6):935-939. http://www.cjche.com.cn/EN/abstract/abstract14652.shtml
    [14] LIU C, SHI J W, GAO C, NIU C M. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3:A review[J]. Appl Catal A:Gen, 2016, 522(25):54-69. https://www.sciencedirect.com/science/article/pii/S0926860X16302071
    [15] CAO F, XIANG J, SU S, WANG P Y, HU S, SUN S L. Ag modified Mn-Ce/gamma-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature[J]. Fuel Process Technol, 2015, 135(1):66-72.
    [16] ZHANG L, ZHANG D S, ZHANG J P, CAI S X, FANG C, HUANG L, LI H R, GAO R H, SHI L Y. Design of meso-TiO2@MnOx-CeOx/CNTs with a core-shell structure as DeNOx catalysts:promotion of activity, stability and SO2-tolerance[J]. Nanoscale, 2013, 5(20):9821-9829. doi: 10.1039/c3nr03150k
    [17] 闫东杰, 玉亚, 徐颖, 黄学敏. Mn、Ce负载顺序对催化剂Mn-Ce/TiO2低温脱硝活性的影响[J].化工进展, 2015, 34(6):1652-1655. http://www.hgjz.com.cn/CN/abstract/abstract17332.shtml

    YANG Dong-jie, YU Ya, XU Ying, HUANG Xue-ming. Effect of loading sequence of Mn and Ce on the activity of Mn-Ce/TiO2catalysts at low-temperature[J]. Chem Ind Eng Prog (China), 2015, 34(6):1652-1655. http://www.hgjz.com.cn/CN/abstract/abstract17332.shtml
    [18] YAO X J, MA K L, ZOU W X, HE S G, AN J B, YANG F M, DONG L. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J]. Chin J Catal, 2017, 38(1):146-159. doi: 10.1016/S1872-2067(16)62572-X
    [19] YOU X C, SHENG Z Y, YU D Q, YANG L, XIAO X, WNAG S. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature[J]. Appl Surf Sci, 2017, 423(30):845-854.
    [20] LI L L, SUN B W, SUN J F, YU S H, GE C Y, TANG C J, DONG L. Novel MnOx-CeO2 nanosphere catalyst for low-temperature NH3-SCR[J]. Catal Commun, 2017, 100(1):98-102.
    [21] LI S H, HUANG B C, YU C L. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J]. Catal Commun, 2017, 98(10):47-51.
    [22] SHEN Q, ZHANG L Y, SUN N N, WANG H, ZHONG L S, HE C, WEI W, SUN Y H. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation[J]. Chem Eng J, 2017, 322(15):46-55.
    [23] GAO F Y, TANG X L, YI H H, LI J Y, ZHAO S Z, WANG J G, CHU C, LI C L. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J]. Chem Eng J, 2017, 98(1):47-51.
    [24] QIU L, PANG D D, ZHANG C L, MENG J J, ZHU R S, OUYANG F. In situ IR studies of Co and Ce doped Mn/TiO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. Appl Surf Sci, 2015, 357(1):189-196.
    [25] CAO F, XIANG J, SU S, WNAG P Y, SUN L S, HU S, LEI S. The activity and characterization of MnOx-CeO2-ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2014, 243(1):347-354. http://downloads.hindawi.com/journals/jnm/2017/8707289.xml
    [26] KWON D W, NAM K B, HONG S C. Influence of tungsten on the activity of a Mn/Ce/W/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal A:Gen, 2015, 497(1):160-166.
    [27] XIONG Y, TANG C J, YAO X J, ZHANG L, LI L L, WANG X B, DENG Y, GAO F, DONG L. Effect of metal ions doping (M=Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Appl Catal A:Gen, 2015, 492(1):206-216. http://priede.bf.lu.lv/ftp/pub/RakstuDarbi/OpenOffice/Vardnicas/3/dict-en_20130731.oxt
    [28] ZHNAG L J, CUI S P, GUO H X, MA X Y, LUO X G. The influence of K+ cation on the MnOx-CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 at low temperature[J]. J Mol Catal A:Chem, 2014, 390(1):14-21. https://www.researchgate.net/publication/298897586_Cation_synergies_affect_ammonia_adsorption_over_VOX_and_VWOX_dispersed_on_a-Al2O3_0001_and_a-Fe2O3_0001
    [29] YAO X, ZHAO R D, CHEN L, DU J, TAO C Y, YANG F M, DONG L. Selective catalytic reduction of NOx by NH3 over CeO2 supported on TiO2:Comparison of anatase, brookite, and rutile[J]. Appl Catal B:Environ, 2017, 208(5):82-93. doi: 10.1186/1743-8977-10-15
    [30] YU C L, HUANG B C, DONG L F, CHEN F, YANG Y, FAN Y M, YANG Y X, LIU X Q, WANG X N. Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature[J]. Chem Eng J, 2017, 98(15):47-51.
    [31] YAO X J, KONG T T, YU S H, LI L I, YANG F M, DONG. Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature[J]. Appl Surf Sci, 2017, 402(30):208-217.
    [32] LI J H, CHEN J, KE R, LUO C K, HAO J M. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catal Commun, 2007, 8(12):1896-1900. doi: 10.1016/j.catcom.2007.03.007
    [33] HE C, LI P, CHENG J, WANG H L, LI J J, LI Q, HAO Z P. Synthesis and characterization of Pd/ZSM-5/MCM-48 biporous catalysts with superior activity for benzene oxidation[J]. Appl Catal A:Gen, 2010, 382(2):167-175. doi: 10.1016/j.apcata.2010.04.033
    [34] 甄开吉.催化剂作用基础[M].北京:科学出版社, 2005.

    ZHEN Kai-ji. Catalyst Basis[M]. Beijing:The Science Publishing Company, 2005.
    [35] KAPTEIJN F, SINGOREDJO L, ANDREINI A, NOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B:Environ, 1994, 3(2):173-189.
    [36] CARNO J, FERRANDON M, BJORNBOM E, JARAS S. Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers[J]. Appl Catal A:Gen, 1997, 155(2):265-281. doi: 10.1016/S0926-860X(97)80129-9
    [37] GAO G, SHI J W, LIU C, GAO C, FAN Z Y, NIU C M. Mn/CeO2 catalysts for SCR of NOx with NH3:comparative study on the effect of supports on low-temperature catalytic activity[J]. Appl Surf Sci, 2017, 411(31):338-346. http://downloads.hindawi.com/journals/amse/2017/3958319.xml
    [38] PARRY E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. J Catal, 1963, 2(5):371-379. doi: 10.1016/0021-9517(63)90102-7
    [39] WU Z B, JIANG B Q, LIU Y, WNAG H Q, JIN R B. DRIFT study of manganese/titania-Based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environ Sci Technol, 2007, 41(16):5812-5817. doi: 10.1021/es0700350
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  39
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-18
  • 修回日期:  2018-04-18
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-06-10

目录

    /

    返回文章
    返回