留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

助剂对铁基费托合成催化剂氧化行为的影响:H2O作用的解读

王珏 杨勇 青明 白云坡 王洪 胡彩霞 相宏伟 岳仁亮

王珏, 杨勇, 青明, 白云坡, 王洪, 胡彩霞, 相宏伟, 岳仁亮. 助剂对铁基费托合成催化剂氧化行为的影响:H2O作用的解读[J]. 燃料化学学报(中英文), 2020, 48(1): 63-74.
引用本文: 王珏, 杨勇, 青明, 白云坡, 王洪, 胡彩霞, 相宏伟, 岳仁亮. 助剂对铁基费托合成催化剂氧化行为的影响:H2O作用的解读[J]. 燃料化学学报(中英文), 2020, 48(1): 63-74.
WANG Jue, YANG Yong, QING Ming, BAI Yun-po, WANG Hong, HU Cai-xia, XIANG Hong-wei, YUE Ren-liang. Effect of the promoters on oxidation behavior of Fe-based Fischer-Tropsch catalyst: Deciphering the role of H2O[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 63-74.
Citation: WANG Jue, YANG Yong, QING Ming, BAI Yun-po, WANG Hong, HU Cai-xia, XIANG Hong-wei, YUE Ren-liang. Effect of the promoters on oxidation behavior of Fe-based Fischer-Tropsch catalyst: Deciphering the role of H2O[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 63-74.

助剂对铁基费托合成催化剂氧化行为的影响:H2O作用的解读

详细信息
  • 中图分类号: O643.36

Effect of the promoters on oxidation behavior of Fe-based Fischer-Tropsch catalyst: Deciphering the role of H2O

More Information
  • 摘要: 以纯Fe催化剂为研究对象,采用XRD、Raman和TPH等手段考察了催化剂的碳化程度、还原程度对H2O氧化过程的影响,获得了H2O氧化过程与催化剂中碳物种转变之间的相互影响规律;系统考察了典型的费托合成助剂K和SiO2存在时对催化剂物化性质以及H2O氧化行为的影响,发现催化剂的碳化程度越高,碳化铁的抗H2O氧化能力越强,氧化过程使得碳物种的石墨化程度增加。适量K助剂可促进碳化铁和催化剂表面石墨碳的形成,提高了碳化铁在H2O氧化过程中的稳定性;SiO2助剂的加入显著抑制了催化剂的碳化,但可有效提高碳化铁以及碳物种的稳定性。
  • 图  1  纯Fe催化剂不同时间碳化及水氧化后的XRD谱图

    Figure  1  XRD patterns of Fe catalysts after carbonization (solid line) and oxidation (dotted line) for different times

    图  2  纯Fe催化剂不同时间H2还原及水氧化后的XRD谱图

    Figure  2  XRD patterns of Fe catalysts after reduction (solid line) and oxidization (dotted line) for different times

    图  3  纯Fe催化剂不同时间碳化及水氧化后的Raman谱图

    Figure  3  Raman spectra of Fe catalysts after carbonization and oxidization for different times

    图  4  纯Fe催化剂碳化及不同时间带水氧化后的TPH谱图(formation rate of CH4(a.u.))

    Figure  4  TPH profiles of Fe catalysts after carbonization and oxidization for different times

    图  5  FeK系列催化剂碳化及水氧化后的XRD谱图

    Figure  5  XRD patterns of FeK catalysts after carburization (solid line) and oxidization (dot line)

    图  6  FeK系列催化剂碳化及水氧化后的Raman谱图

    Figure  6  Raman spectra of FeK catalysts after carbonization and oxidation

    图  7  FeK系列催化剂碳化及水氧化后的TPH谱图(formation rate of CH4(a.u.))

    Figure  7  TPH profiles of FeK catalysts after carbonization and oxidization for different times

    图  8  FeSi系列催化剂碳化及水氧化后的XRD谱图

    Figure  8  XRD patterns of FeSi catalysts after carbonization (solid line) and oxidization (dot line)

    图  9  FeSi系列催化剂碳化及水氧化后的Raman谱图

    Figure  9  Raman spectra of FeSi catalysts after carbonization and oxidization

    图  10  FeSi系列催化剂碳化及水氧化后的TPH谱图(formation rate of CH4(a.u.))

    Figure  10  TPH profiles of FeSi catalysts after carbonization and oxidization for different times

    表  1  纯Fe催化剂碳化及氧化后的XRD & Raman表征

    Table  1  XRD and Raman results of Fe catalysts after carbonization and oxidization

    SampleContent
    wmol/%
    FeCx
    phase shift
    wmol/%
    Oxidation
    degreea
    D/%
    Particle
    size d/nm
    ID/IGPeak area of
    carbon deposition
    via Raman
    /(×104 a.u.)
    Increase ratio
    of carbon deposition
    after oxidation
    by H2Ob /%
    Fe5C2Fe3O4Fe5C2Fe3O4
    Fe-C136.1663.8530.9285.517.6521.231.664.42130.77
    Fe-C1W25.2494.752.7525.830.8710.18
    Fe-C368.0231.9841.1360.479.0420.821.375.2357.17
    Fe-C3W226.8973.114.2626.970.968.22
    Fe-C584.3015.7049.3158.4910.4817.741.415.527.25
    Fe-C5W234.9965.027.4023.311.085.92
    a: calculated as: (FeCx content before oxidation -FeCx content after oxidation)/ FeCx content before oxidation ×100%;
    b: calculated from (area of deposited carbon after oxidation-area of deposited carbon before oxidation)/ area of deposited carbon before oxidation ×100%
    下载: 导出CSV

    表  2  纯Fe催化剂H2还原和氧化后的XRD拟合

    Table  2  XRD results of the Fe catalysts after reduction and oxidization

    SampleContent w/%Particle size d/nm
    Fe3O4FeFe3O4Fe
    Fe-H190.189.8226.0216.82
    Fe-H1W2100.000.0029.41-
    Fe-H368.6031.4026.1220.29
    Fe-H3W2100.000.0035.70-
    Fe-H550.3549.6529.8122.58
    Fe-H5W2100.000.0043.48-
    下载: 导出CSV

    表  3  纯Fe催化剂的TPH拟合

    Table  3  TPH results of the Fe catalysts

    Sampleα atomic
    carbon
    /(×10-6 a.u.)
    β polymeric,
    amorphous
    aggregates
    /(×10-5 a.u.)
    γ iron
    carbides
    /(×10-5 a.u.)
    δ graphitic
    (crystalline)
    films
    /(×10-6 a.u.)
    Total δ
    graphitic
    /(×10-6 a.u.)a
    Total
    carbon
    /(×10-4 a.u.)b
    Fe-C52.2416.4211.859.090.080.84-0.843.77
    Fe-C5W0.5--8.353.122.772.800.633.431.46
    Fe-C5W1--2.809.053.356.691.828.511.60
    Fe-C5W2-4.213.935.911.132.943.486.421.58
    a: sum of two different kind of δ-carbon; b: sum of all carbon species
    下载: 导出CSV

    表  4  FeK系列催化剂的XRD & Raman表征

    Table  4  XRD and Raman results of FeK catalysts after carbonization and oxidization

    SampleContent wmol/%FeCx
    phase shift
    wmol/%
    Oxidation
    degreea D/%
    Particle size d/nmID/IGPeak area of
    carbon deposition via
    Raman/(×104 a.u.)
    FeCxFe3O4Fe5C2Fe3O4
    Fe-C136.1663.8530.9285.517.6521.231.664.19
    Fe-C1W25.2494.752.7525.830.879.65
    Fe1K-C164.1135.8945.5170.995.8520.661.474.11
    Fe1K-C1W218.5981.415.3422.160.99.34
    Fe3K-C161.3838.6222.4736.616.1418.521.413.93
    Fe3K-C1W238.9161.093.3022.061.105.13
    Fe5K-C133.8566.1515.9547.125.3221.311.453.63
    Fe5K-C1W217.9082.103.9725.880.923.71
    a: calculated as: (FeCx content before oxidation -FeCx content after oxidation)/ FeCx content before oxidation ×100%
    下载: 导出CSV

    表  5  FeK催化剂的TPH拟合

    Table  5  TPH results of FeK catalysts

    Sample
    no.
    α atomic
    carbon
    /(×10-8 a.u.)
    β polymeric,
    amorphous
    aggregates
    /(×10-7 a.u.)
    γ iron
    carbides
    /(×10-6 a.u.)
    δ graphitic
    (crystalline) films
    /(×10-7 a.u.)
    Total δ
    graphitic
    /(×10-7 a.u.)a
    Total
    carbon
    /(×10-6 a.u.)b
    Fe-C14.05-33.040.930.310.13-0.134.59
    Fe-C1W2-6.8310.960.440.190.22-0.222.44
    Fe1K-C19.75-24.420.420.87-2.742.744.11
    Fe1K-C1W2-2.37-1.480.592.052.314.362.74
    Fe3K-C15.37-2.501.781.942.360.793.154.34
    Fe3K-C1W2--5.132.270.943.40-3.404.06
    Fe5K-C13.80-1.191.672.02-2.842.844.13
    Fe5K-C1W2--0.372.221.53-2.972.974.08
    a: sum of two different kind of δ-carbon; b: sum of all carbon species
    下载: 导出CSV

    表  6  FeSi系列催化剂的XRD & Rama表征

    Table  6  XRD and Raman results of FeSi catalysts after carbonization and oxidization

    SampleContent
    wmol/%
    FeCx
    phase
    shift wmol/%
    Oxidation
    degreea
    D/%
    Particle size d/nmID/IGPeak area of
    carbon deposition via
    Raman/(×104 a.u.)
    FeCxFe3O4Fe5C2Fe3O4
    Fe-C584.3015.7049.3158.4910.4817.741.284.92
    Fe-C5W234.9965.027.4023.310.947.87
    Fe5Si-C566.2933.7124.2536.586.4712.991.672.68
    Fe5Si-C5W242.0457.965.3818.921.112.13
    Fe10Si-C558.3141.6918.7132.096.724.441.431.44
    Fe10Si-C5W239.6060.405.5816.241.481.29
    Fe20Si-C542.5057.509.6422.685.532.021.071.02
    Fe20Si-C5W232.8667.144.668.771.040.54
    a: calculated as: (FeCx content before oxidation -FeCx content after oxidation)/ FeCx content before oxidation ×100%
    下载: 导出CSV

    表  7  FeSi催化剂的TPH拟合

    Table  7  TPH results of FeSi catalysts

    Sampleα atomic
    carbon
    /(×10-7 a.u.)
    β polymeric,
    amorphous
    aggregates
    /(×10-6 a.u.)
    γ iron
    carbides
    /(×10-6 a.u.)
    δ graphitic
    (crystalline)
    films
    /(×10-7 a.u.)
    Total δ
    graphitic
    /(×10-7 a.u.)a
    Total
    carbon
    /(×10-5 a.u.)b
    Fe-C522.36164.20118.5290.930.778.43-8.4337.75
    Fe-C5W2-42.1239.2759.0711.2729.3934.6063.9915.81
    Fe5Si-C5--2.723.407.9151.70-51.701.92
    Fe5Si-C5W2--1.081.632.560.39-0.390.53
    Fe10Si-C56.381.192.461.173.44-30.7830.781.20
    Fe10Si-C5W23.281.831.991.091.38-27.3927.390.94
    Fe20Si-C50.970.250.680.542.27--00.38
    Fe20Si-C5W21.080.191.381.261.53--00.45
    a: sum of two different kind of δ-carbon; b: sum of all carbon species
    下载: 导出CSV
  • [1] 温晓东, 杨勇, 相宏伟, 焦海军, 李永旺.费托合成铁基催化剂的设计基础:从理论走向实践[J].中国科学:化学, 2017, 47(11):1298-1311. http://www.cnki.com.cn/Article/CJFDTotal-JBXK201711007.htm

    WEN Xiao-dong, YANG Yong, XIANG Hong-wei, JIAO Hai-jun, LI Yong-wang. The design principle of iron-based catalysts for fischer-tropsch synthesis:from theory to practice[J]. Sci Sin Chim, 2017, 47(11):1298-1311. http://www.cnki.com.cn/Article/CJFDTotal-JBXK201711007.htm
    [2] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis:Tuning the product selectivity[J]. ChemCatChem, 2010, 2(9):1030-1058. doi: 10.1002/cctc.201000071
    [3] 张成华, 杨勇, 陶智超, 李廷真, 万海军, 相宏伟, 李永旺. Cu、K助剂对FeMn/SiO2催化费托合成的影响[J].物理化学学报, 2006, 22(11):1310-1316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb200611002

    ZHANG Cheng-hua, YANG Yong, TAO Zhi-chao, LI Ting-zhen, WAN Hai-jun, XIANG Hong-wei, LI Yong-wang. Effects of Cu and K on Co-precepitated FeMn/SiO2 catalysts for Fischer-Tropsch synthesis[J]. Acta Phys-Chim Sin, 2006, 22(11):1310-1316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb200611002
    [4] YANG Y, XIANG H W, TIAN L, WANG H, ZHANG C H, TAO Z C, XU Y Y, ZHONG B, LI Y W. Structure and Fischer-Tropsch performance of iron-manganese catalyst incorporated with SiO2[J]. Appl Catal A:Gen, 2005, 284(1):105-122. http://www.sciencedirect.com/science/article/pii/S0926860X05000323
    [5] ARGYLE M D, BARTHOLOMEW C H. Heterogeneous catalyst deactivation and regeneration:A review[J]. Catalysts, 2015, 5:145-269. doi: 10.3390/catal5010145
    [6] DRY M E, SHINGLES T, BOSHOFF L J, BOTHA C S H. Factors influencing the formation of carbon on iron Fischer-Tropsch catalysts:Ⅱ. The effect of temperature and of gases and vapors present during Fischer-Tropsch synthesis[J]. J Catal, 1970, 17(3):347-354. doi: 10.1016/0021-9517(70)90110-7
    [7] SARKAR A, SETH D, DOZIER A K, NEATHERY J K, HAMDEH H H, DAVIS B H. Fischer-Tropsch synthesis:Morphology, phase transformation and particle size growth of nano-scale particles[J]. Catal Lett, 2007, 117(1/2):1-17. doi: 10.1007/s10562-007-9194-6
    [8] MANSKER L D, JIN Y, BUKUR D B, DATYE A K. Characterization of slurry phase iron catalysts for Fischer-Tropsch synthesis[J]. Appl Catal A:Gen, 1999, 186(1/2):277-296. http://www.sciencedirect.com/science/article/pii/S0926860X99001490
    [9] DRY M E, HOOGENDOORN J C. Technology of the Fischer-Tropsch process[J]. Catal Rev, 1981, 23(1/2):265-278. http://d.old.wanfangdata.com.cn/Periodical/ddhg201905032
    [10] NING W, KOIZUMI N, CHANG H, MOCHIZUKU T, ITOH T, YAMADA M. Phase transformation of unpromoted and promoted Fe catalysts and the formation of carbonaceous compounds during Fischer-Tropsch synthesis reaction[J]. Appl Catal A:Gen, 2006, 312(9):35-44. http://www.sciencedirect.com/science/article/pii/S0926860X06004790
    [11] PENDYALA V R R, JACOBS G, MOHANDAS J C, LUO M S, HAMDEH H H, JI Y Y, RIBEIRO M C, DAVIS B H. Fischer-Tropsch Synthesis:Effect of water over iron-based catalysts[J]. Catal Lett, 2010, 140(3/4):98-105. doi: 10.1007/s10562-010-0452-7
    [12] THÜNE P, MOODLEY P, SCHEIJEN F, FREDRIKSSON H, LANCEE R, KROPF J, MILLER J, NIEMANTSVERDRIET J W. The effect of water on the stability of iron oxide and iron carbide nanoparticles in hydrogen and syngas followed by in situ X-ray absorption spectroscopy[J]. J Phys Chem C, 2012, 116(13):7367-7373. doi: 10.1021/jp210754k
    [13] SATTERFIELD C N, HANLON R T, TUNG S E, ZOU Z M, PAPAEFTHYMIOU G C. Effect of water on the iron-catalyzed Fischer-Tropsch synthesis[J]. Ind Eng Chem Pro Res Dev, 1986, 25(3):407-414. doi: 10.1021/i300023a007
    [14] QING M, YANG Y, WU B S, XU J, ZHANG C H, GAO P, LI Y W. Modification of Fe-SiO2 interaction with zirconia for iron-based Fischer-Tropsch catalysts[J]. J Catal, 2011, 279(1):111-122. doi: 10.1016/j.jcat.2011.01.005
    [15] BUTT J B. Carbide phases on iron-based Fischer-Tropsch synthesis catalysts part Ⅰ:Characterization studies[J]. Catal Lett, 1990, 7(1/4):61-81. doi: 10.1007/BF00764492
    [16] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53(3):1126-1130. doi: 10.1063/1.1674108
    [17] NEMANICH R J, SOLIN S A. First- and second-order Raman scattering from finite-size crystals of graphite[J]. Phys Rev B, 2015, 20(2):392-401. http://www.researchgate.net/publication/235593141_First-_and_second-order_Raman_scattering_from_finite-size_crystals_of_graphite
    [18] DE FARIA D L A, VENÂNCIO SILVA S, DE OLIVEIRA M T. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. J Raman Spectrosc, 1997, 28(11):873-878. doi: 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B
    [19] TAN P H, ZHANG S L, KWOK T Y, HUANG F M, SHI Z J, ZHOU X H, GU Z N. Comparative Raman study of carbon nanotubes prepared by D.C. arc discharge and catalytic methods[J]. J Raman Spectrosc, 1997, 28(5):369-372. doi: 10.1002/(SICI)1097-4555(199705)28:5<369::AID-JRS107>3.0.CO;2-X
    [20] SHULTZ J F, HALL W K, SELIGMAN B, ANDERSON R B. Studies of the Fischer-Tropsch synthesis. XIV. Hägg iron carbide as catalysts[J]. J Am Chem Soc, 1955, 77(1):213-221. doi: 10.1021/ja01606a079
    [21] XU J, BARTHOLOMEW C H. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts[J]. J Phys Chem B, 2005, 109(6):2392-2403. doi: 10.1021/jp048808j
    [22] MILLER D G, MOSKOVITS M. A study of the effects of potassium addition to supported iron catalysts in the Fischer-Tropsch reaction[J]. J Phys Chem, 1988, 92(21):6081-6085. doi: 10.1021/j100332a047
    [23] BONZEL H P, KREBS H J. Enhanced rate of carbon deposition during Fischer-Tropsch synthesis on K promoted Fe[J]. Surf Sci, 1981, 109(2):L527-L531. doi: 10.1016/0039-6028(81)90486-6
    [24] FERDI S, SING K S W, WEITKAMP J. Handbook of Porous Solids(vol.3)[M]. Germany:Wiley-VCH, 2002:1543-1591.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  59
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-24
  • 修回日期:  2019-11-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-01-10

目录

    /

    返回文章
    返回