留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨基功能化的金属有机框架与模型燃油中含氮化合物的结合作用

王蕾 赵新华 熊振湖 张金苗 李晨 武春生

王蕾, 赵新华, 熊振湖, 张金苗, 李晨, 武春生. 氨基功能化的金属有机框架与模型燃油中含氮化合物的结合作用[J]. 燃料化学学报(中英文), 2016, 44(9): 1089-1098.
引用本文: 王蕾, 赵新华, 熊振湖, 张金苗, 李晨, 武春生. 氨基功能化的金属有机框架与模型燃油中含氮化合物的结合作用[J]. 燃料化学学报(中英文), 2016, 44(9): 1089-1098.
WANG Lei, ZHAO Xin-hua, XIONG Zhen-hu, ZHANG Jin-miao, LI Chen, WU Chun-sheng. Combination of amino functionalized metal organic framework with nitrogenous compounds in model fuel[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1089-1098.
Citation: WANG Lei, ZHAO Xin-hua, XIONG Zhen-hu, ZHANG Jin-miao, LI Chen, WU Chun-sheng. Combination of amino functionalized metal organic framework with nitrogenous compounds in model fuel[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1089-1098.

氨基功能化的金属有机框架与模型燃油中含氮化合物的结合作用

基金项目: 

国家自然科学基金 50878138

详细信息
    通讯作者:

    王蕾, Tel: 13820677407, E-mail: zhenhu.xiong@126.com, wangl1026@tcu.edu.cn

  • 中图分类号: TE99

Combination of amino functionalized metal organic framework with nitrogenous compounds in model fuel

Funds: 

the National Natural Science Foundation of China 50878138

  • 摘要: 合成了金属有机骨架MIL-53(Al)和MIL-53(Al)-NH2,并且将其作为吸附剂去除油品中的含氮化合物(喹啉和吡咯)。采用X射线衍射(XRD)、扫描电镜(SEM)、FT-IR光谱以及热重分析等对两种吸附剂进行了表征。结果表明,MIL-53(Al)-NH2能够快速地吸附油品中的喹啉/吡咯并且显示了较高的吸附容量,但MIL-53(Al)对喹啉/吡咯的吸附容量较低,原因是MIL-53(Al)-NH2和喹啉之间存在有利的氢键结合,但MIL-53(Al)-NH2与吡咯的氢键作用相对较低。研究了影响吸附容量的因素,包括吸附时间和温度。采用准一级和准二级动力学模型拟合了喹啉和吡咯的吸附数据,研究了MIL-53(Al)-NH2对喹啉和吡咯的吸附等温线和吸附热力学。通过简单的溶剂洗涤使得MIL-53(Al)-NH2再生,并重新用于吸附过程。
  • 图  1  MIL-53(Al) 和MIL-53(Al)-NH2的光谱谱图

    Figure  1  FT-IR spectra (a) and XRD pattern (b) of MIL-53(Al) and MIL-53(Al)-NH2, and the isotherms of adsorption-desorption on MIL-53(Al) (c) and MIL-53(Al)-NH2(d)

    图  2  MIL-53(Al) (a) 和MIL-53(Al)-NH2(b) 的SEM照片和热重曲线(c)

    Figure  2  SEM micrographs of MIL-53(Al) (a) and MIL-53(Al)-NH2 (b) and TGA curves (c)

    图  3  在15 ℃下接触时间对喹啉(a), 吡咯(b) 在MIL-53(Al)-NH2和MIL-53(Al) 上的吸附

    Figure  3  Effect of contact time on the adsorption of quinoline (a) and pyrrole (b) on MIL-53(Al)-NH2 and MIL-53(Al) at 15 ℃

    图  4  10 ℃下喹啉(a) 和吡咯(b) 在MIL-53(Al)-NH2和MIL-53(Al) 上的吸附等温线

    Figure  4  Adsorption isotherms for quinoline (a) and pyrrole (b) over MIL-53(Al)-NH2 and MIL-53(Al) at 10 ℃

    图  5  在10 ℃下MIL-53(Al)-NH2吸附喹啉和吡咯的分离因子RL

    Figure  5  Separation factors (RL) of quinoline and pyrrole adsorption over MIL-53(Al)-NH2 at 10 ℃

    图  6  喹啉在MIL-53(Al)-NH2上吸附可能的机理

    Figure  6  Possible mechanism of quinoline adsorption on MIL-53(Al)-NH2

    图  7  MIL-53(Al)-NH2循环次数对喹啉和吡咯吸附容量的影响

    (15 ℃,C0=100 mg/L,m=10 mg,V=10 mL,contact time=180 min)

    Figure  7  Effect of recycle numbers of MIL-53(Al)-NH2 on the adsorption capacity of quinoline and pyrrole

    表  1  MIL-53(Al) 和MIL-53(Al)-NH2的比表面积、孔径和孔容

    Table  1  BET analysis data of MIL-53(Al) and MIL-53(Al)-NH2 samples

    Adsorbent BET surface area A/(m2·g-1) Tolal pore volume v/(cm3·g-1) Average pore diameter d/nm
    MIL-53(Al) 1 328.28 0.785 2.36
    MIL-53(Al)-NH2 767.93 0.409 2.13
    下载: 导出CSV

    表  2  MIL-53(Al)-NH2吸附喹啉和吡咯的动力学参数

    Table  2  Kinetic parameters of pseudo-first-order and -second-order models for the adsorption of quinoline and pyrrole on the MIL-53(Al)-NH2

    Chemical Pseudo first-order rate model Pseudo second-order rate model
    qe(expt.)
    /(mg·g-1)
    qe(cal.)
    /(mg·g-1)
    K1
    /(min-1)
    R2 qe(expt.)
    /(mg·g-1)
    qe(cal.)
    /(mg·g-1)
    K2
    /(g·mg-1·min-1)
    R2
    Quinoline 28.74 11.25 0.035 22 0.816 6 28.74 29.25 0.010 99 0.999 8
    Pyrrole 12.85 7.31 0.025 95 0.868 3 12.85 13.31 0.010 26 0.999 7
    下载: 导出CSV

    表  3  在不同温度下由Langmuir模型和Freundlich模型拟合的MIL-53(Al)-NH2吸附喹啉/吡咯的等温线模型参数

    Table  3  Adsorption parameters based on Langmuir model and Freundlich model at different temperatures

    Chemical Temp
    t/℃
    Langmuir model Freundlich model
    qm /(mg·g-1) b /(L·mg-1) R2 KF /(mg·g-1) n /(g·L-1) R2
    Quinoline 10 139.53 0.152 5 0.997 6 2.304 1.471 0.967 7
    25 120.38 0.115 5 0.997 2 1.925 1.468 0.964 0
    40 108.62 0.046 9 0.979 6 1.507 1.419 0.943 6
    Pyrrole 10 31.399 0.149 8 0.994 3 0.685 1.594 0.952 8
    25 30.152 0.001 1 0.998 8 0.414 1.469 0.974 2
    40 26.240 0.001 0 0.998 0 0.250 1.391 0.981 5
    下载: 导出CSV

    表  4  喹啉和吡咯在MIL-53(Al)-NH2上吸附的热力学参数

    Table  4  Thermodynamic parameters of the adsorption of quinoline and pyrrole on the MIL-53(Al)-NH2

    ΔH0 /(kJ·mol-1) ΔS0 /(J·mol-1·K-1) ΔG0/(kJ·mol-1)
    10 ℃ 25 ℃ 40 ℃
    Quinoline -4.999 -12.99 -1.320 -1.125 -0.930
    Pyrrole -2.253 -6.652 -0.408 -0.310 -0.212
    下载: 导出CSV
  • [1] WANG Z, SUN Z, KONG L, LI G. Adsorptive removal of nitrogen-containing compounds from fuel by metal-organic frameworks[J].J Energy Chem, 2013, 22(6): 869-875. doi: 10.1016/S2095-4956(14)60266-7
    [2] AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. J Hazard Mater, 2016, 301: 259-276. doi: 10.1016/j.jhazmat.2015.08.045
    [3] AHMED I, JHUNG S H. Adsorptive denitrogenation of model fuel with cucl-loaded metal-organic frameworks (MOFs)[J]. Chem Eng J, 2014, 251: 35-42. doi: 10.1016/j.cej.2014.04.044
    [4] 洪新, 唐克, 丁世洪.杂原子介孔Co-MCM-41分子筛的制备及其柴油深度吸附脱碱氮性能[J].燃料化学学报, 2016, 44(1): 99-105. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18767.shtml

    HONG Xin, TANG Ke, DING Shi-hong. Preparation and deep adsorption denitrification from diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41[J].J Fuel Chem Technol, 2016, 44(1): 99-105. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18767.shtml
    [5] KHAN N A, JHUNG S H. Effect of central metal ions of analogous metal-organic frameworks on the adsorptive removal of benzothiophene from a model fuel[J]. J Hazard Mater, 2013, 260: 1050-1056. doi: 10.1016/j.jhazmat.2013.06.076
    [6] GADDAFI I, DANMALIKI, SALEH T A. Influence of conversion parameters of waste tires to activated carbon on adsorption of dibenzothiophene from model fuels[J]. J Cleaner Prod, 2016, 117: 50-55. doi: 10.1016/j.jclepro.2016.01.026
    [7] AHMED I, JHUNG S H. Remarkable improvement in adsorptive denitrogenation of model fossil fuels with cucl/activated carbon, prepared under ambient condition[J]. Chem Eng J, 2015, 279: 327-334. doi: 10.1016/j.cej.2015.05.035
    [8] QIU M, CHEN C, LI W. Rapid controllable synthesis of Al-MIL-96 and its adsorption of nitrogenous vocs[J]. Catal Today, 2015, 258: 132-138. doi: 10.1016/j.cattod.2015.04.017
    [9] HAN X, LIN H, ZHENG Y. The role of oxygen functional groups in the adsorption of heteroaromatic nitrogen compounds[J]. J Hazard Mater, 2015, 297: 217-223. doi: 10.1016/j.jhazmat.2015.04.056
    [10] KHAN N A, HASAN Z, JHUNG S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review[J]. J Hazard Mater, 2013, 244-245: 444-456. doi: 10.1016/j.jhazmat.2012.11.011
    [11] LIN K Y A, CHANG H A. Ultra-high adsorption capacity of zeolitic imidazole framework-67(ZIF-67) for removal of malachite green from water[J]. Chemosphere, 2015, 139: 624-631. doi: 10.1016/j.chemosphere.2015.01.041
    [12] BRITT D, TRANCHEMONTAGNE D, YAGHI O M. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proc Natl Acad Sci USA, 2008, 105(33): 11623-11627. doi: 10.1073/pnas.0804900105
    [13] FALCARO P, RICCO R, YAZDI A, IMAZ I, FURUKAWA S, MASPOCH D, AMELOOT R, EVANS J D, DOONAN C J. Application of metal and metal oxide nanoparticles@Mofs[J]. Coord Chem Rev, 2016, 307: 237-254. doi: 10.1016/j.ccr.2015.08.002
    [14] WU C. Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution[J].Rsc Adv, 2015, 5(100): 82127-82137. doi: 10.1039/C5RA15497A
    [15] CHEN Q, HE Q Q, LV M M, XU Y L, YANG H B, LIU X T, WEI F Y. Selective adsorption of cationic dyes by UiO-66-NH2[J]. Appl Surf Sci, 2015, 327: 77-85. doi: 10.1016/j.apsusc.2014.11.103
    [16] HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions[J]. J Hazard Mater, 2014, 283: 329-339. https://www.researchgate.net/publication/266148704_Removal_of_hazardous_organics_from_water_using_metal-organic_frameworks_MOFs_Plausible_mechanisms_for_selective_adsorptions
    [17] AHMED I, JHUNG S H. Effective adsorptive removal of indole from model fuel using a metal-organic framework functionalized with amino groups[J]. J Hazard Mater, 2015, 283: 544-550. doi: 10.1016/j.jhazmat.2014.10.002
    [18] QIAN X K, YADIAN B, WU R B, LONG Y, ZHOU K, ZHU B, HUANG Y Z. Structure stability of metal-organic framework MIL-53(Al) in aqueous solutions[J]. Int J Hydrogen Energy, 2013, 38(36): 16710-16715. doi: 10.1016/j.ijhydene.2013.07.054
    [19] LI C, XIONG Z H, ZHANG J M, WU C S. The strengthening role of the amino group in metal-organic framework MIL-53(Al) for methylene blue and malachite green dye adsorption[J]. J Chem Eng Data, 2015, 60(11): 3414-3422. doi: 10.1021/acs.jced.5b00692
    [20] JIAN M P, LIU B, ZHANG G S, LIU R P, ZHANG X W. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8(ZIF-8) nanoparticles[J]. Colloid Surf A, 2014, 465(1): 67-76. http://or.nsfc.gov.cn/handle/00001903-5/276499
    [21] XIE L T, LIU D H, HUANG H L, YANG Q Y, ZHONG C L. Efficient capture of nitrobenzene from waste water using metal-organic frameworks[J]. Chem Eng J, 2014, 246: 142-149. doi: 10.1016/j.cej.2014.02.070
    [22] HO Y S, CHIANG T H, HSUEH Y M. Removal of basic dye from aqueous solution using tree fern as a biosorbent[J]. Process Biochem, 2005, 40(1): 119-124. doi: 10.1016/j.procbio.2003.11.035
    [23] CHENG X, ZHANG A, HOU K, LIU M, WANG Y, SONG C, ZHANG G, GUO X. Size-and morphology-controlled NH2-MIL-53(Al) prepared in DMF-water mixed solvents[J]. Dalton Trans, 2013, 42(37): 13698-13705. doi: 10.1039/c3dt51322j
    [24] MORADI S E, DADFARNIA S, SHABANI A M H, EMAMI S. Removal of congo red from aqueous solution by its sorption onto the metal organic framework MIL-100(Fe): Equilibrium, kinetic and thermodynamic studies[J]. Desalin Water Treat, 2014, 159(3): 1-13. https://www.researchgate.net/publication/280171689_Removal_of_congo_red_from_aqueous_solution_by_its_sorption_onto_the_metal_organic_framework_MIL-100(Fe)_equilibrium_kinetic_and_thermodynamic_studies
    [25] LIN S, SONG Z L, CHE G B, REN A, LI P, LIU C B, ZHANG J S. Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution[J]. Microporous Mesoporous Mater, 2014, 193(2): 27-34. https://www.researchgate.net/publication/261186375_Adsorption_behavior_of_metal-organic_frameworks_for_methylene_blue_from_aqueous_solution
    [26] HASAN Z, CHOI E J, JHUNG S H, HASAN Z, CHOI E J, JHUNG S H. Adsorption of naproxen and clofibric acid over a metal-organic framework MIL-101 functionalized with acidic and basic groups[J]. Chem Eng J, 2013, 219(3): 537-544. https://www.researchgate.net/publication/257567022_Adsorption_of_naproxen_and_clofibric_acid_over_a_metal-organic_framework_MIL-101_functionalized_with_acidic_and_basic_groups
    [27] LIU H W, DONG Y H, WANG H Y, YUN L. Adsorption behavior of ammonium by a bioadsorbent-boston ivy leaf powder[J].J Environ Sci, 2010, 22(10): 1513-1518. doi: 10.1016/S1001-0742(09)60282-5
    [28] MCGUIRE C V, FORGAN R S. The surface chemistry of metal-organic frameworks[J]. Chem Commun, 2015, 51(25): 5199-5217. doi: 10.1039/C4CC04458D
    [29] AHMED I, KHAN N A, HASAN Z, JHUNG S H. Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: Effect of acid site inclusion[J]. J Hazard Mater, 2013, 250-251: 37-44. doi: 10.1016/j.jhazmat.2013.01.024
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  37
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-16
  • 修回日期:  2016-05-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-09-10

目录

    /

    返回文章
    返回