留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿磨法制备纳米Li4SiO4材料用于高温捕集CO2

黄雪芹 肖强 钟依均 朱伟东

黄雪芹, 肖强, 钟依均, 朱伟东. 湿磨法制备纳米Li4SiO4材料用于高温捕集CO2[J]. 燃料化学学报(中英文), 2016, 44(9): 1119-1124.
引用本文: 黄雪芹, 肖强, 钟依均, 朱伟东. 湿磨法制备纳米Li4SiO4材料用于高温捕集CO2[J]. 燃料化学学报(中英文), 2016, 44(9): 1119-1124.
HUANG Xue-qin, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. Wet ball-milling method to prepare nanocrystalline Li4SiO4 materials for CO2 capture at high temperatures[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1119-1124.
Citation: HUANG Xue-qin, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. Wet ball-milling method to prepare nanocrystalline Li4SiO4 materials for CO2 capture at high temperatures[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1119-1124.

湿磨法制备纳米Li4SiO4材料用于高温捕集CO2

基金项目: 

国家自然科学基金 21303166

国家自然科学基金 21471131

详细信息
    通讯作者:

    肖强, E-mail: xiaoq@zjnu.cn

  • 中图分类号: O613

Wet ball-milling method to prepare nanocrystalline Li4SiO4 materials for CO2 capture at high temperatures

Funds: 

the National Natural Science Foundation of China 21303166

the National Natural Science Foundation of China 21471131

  • 摘要: 采用不同硅源、锂源以湿磨法结合高温焙烧制备了纳米Li4SiO4材料,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征了合成材料的结构和表面形貌,利用热重分析仪(TG)研究了Li4SiO4材料高温下的CO2吸收性能和循环使用稳定性。结果表明,湿磨法制备的Li4SiO4材料在550℃、2.5×104 Pa下,10 min可达吸收平衡,平衡吸收量为27.9%(质量分数),经五次吸收-解吸后仍保持初始吸收性能,显示了良好的循环稳定性。将25%CO2-25%N2-50%He混合气通过Li4SiO4材料床层,发现在550℃下,CO2能被高效捕集,在相对湿度为10%的水汽存在下,Li4SiO4捕集CO2的性能没有明显下降。
  • 图  1  固定床CO2捕集装置示意图

    Figure  1  Sketch of the fixed-bed setup for CO2 capture

    图  2  550 ℃、2.5×104 Pa CO2分压下不同锂源和硅源合成Li4SiO4材料的CO2吸收曲线

    Figure  2  Uptake profiles of CO2 in Li4SiO4 samples prepared by using various silicon and lithium sources at a CO2 partial pressures of 2.5×104 Pa and 550 ℃ (see Table 1 for sample code)

    图  3  湿磨法制备的Li4SiO4材料的XRD谱图

    a: sample 1; b: sample 3; c: sample 4

    Figure  3  XRD patterns of the as-prepared Li4SiO4 samples

    图  4  4号Li4SiO4样品的SEM ((a)、(b)) 以及TEM ((c)、(d)) 照片

    Figure  4  SEM ((a), (b)) and TEM ((c), (d)) images of the Li4SiO4 sorbent for sample 4

    图  5  CO2在4号Li4SiO4上的变温吸收-解吸曲线

    Figure  5  Absorption-desorption profiles of CO2 in sample 4 of Li4SiO4 as a function of temperature under CO2 partial pressure of 2.5×104 Pa

    图  6  在550 ℃、不同CO2分压下Li4SiO4材料的CO2吸收曲线

    Figure  6  Uptake profies of CO2 in the Li4SiO4 at different CO2 partial pressures and 550 ℃

    图  7  Li4SiO4样品的CO2吸收-解吸五次循环曲线

    1: capture at 550 ℃ and a CO2 partial pressure of 2.5×104 Pa, 2: regeneration by heating (10 ℃/min) to 600 ℃ in a pure N2 flow of 40 mL/min

    Figure  7  Five cycles of CO2 capture-regeneration in the Li4SiO4 sorbent

    图  8  纳米Li4SiO4样品在水汽下对混合气中CO2的捕集

    Figure  8  Comparison of CO2 capture through the nanocrystalline Li4SiO4 bed from a mixture of 25% N2-25% CO2-50% He in the presence/absence of moisture 550 ℃, the total gas flow: 8 mL/min, RH 10%

    表  1  不同硅源、锂源制备的Li4SiO4材料及其CO2吸收性能

    Table  1  Li4SiO4 materials prepared by various silicon and lithium sources and their CO2 absorption properties

    Sample Lithium source Silicon source Absorption
    equilibrium w/%
    1 LiOH·H2O silica sol 19.9
    2 LiOH·H2O fumed silica 2.3
    3 LiOH·H2O silicic acid 25.6
    4 LiOH·H2O TEOS 27.9
    5 Li2CO3 TEOS no absorption
    6 LiNO3 TEOS -
    -: the precursor is in paste form and cannot produce the solid precursor
    下载: 导出CSV

    表  2  湿磨法制备的Li4SiO4材料与文献中报道的锂基类吸收剂的CO2吸收性能比较

    Table  2  Comparison of the CO2 capture properties of the Li4SiO4 sorbent prepared using the wet ball-milling method and lithium based sorbents reported in references

    Sorbent CO2 capture conditions Maximum of
    CO2 capture rate
    /(%·min-1)a
    Equilibrium
    sorption amount
    w/%
    Time required
    to equilibrium
    t/min
    Reference
    temp
    t/ ℃
    CO2
    pressure
    p/Pa
    total feed
    flow
    q/(mL·min-1)
    Li4SiO4 550 2.5×104 40 6.4 27.8 ~10 this work
    Li2ZrO3 550 2.5×104 40 0.5 5.20 ~20 [14]
    K-Li2ZrO3 550 2.5×104 40 1.9 22.0 < 20 [16]
    Li4SiO4 550 2.5×104 40 3.1 23.9 >60 [19]
    Li4SiO4 550 2.5×104 40 3.2 24.5 >60 [20]
    Fe0.15Li3.45SiO4 550 2.5×104 40 3.4 26.0 ~25 [20]
    Li4SiO4 550 2.5×104 40 5.5 29.8 ~7.5 [21]
    Li4SiO4 680 1.0×105 - 2.0 27.5 ~40 [18]
    Li4SiO4 620 5×104 100 2.7 28.62 80 [17]
    a: differential values of the uptake curves
    下载: 导出CSV
  • [1] 《联合国气候变化框架公约》京都议定书[Z].联合国:日本京都, 1998.

    《United Nations Framework Convention on Climate Change》 Kyoto Protocol[Z]. UN: Kyoto, Japan, 1998.
    [2] 陈长虹, 鲍仙华.全球能源消费与CO2排放量[J].上海环境科学, 1999, 18(2): 62-64.

    CHEN Chang-hong, BAO Xian-hua. Global energy consumption and CO2 emission[J]. Shanghai Environ Sci, 1999, 18(2): 62-64.
    [3] LI H, HELENE B, DE C. Approaching sustainable H2 production: Sorption enhanced steam reforming of ethanol[J]. J Phy Chem A, 2010, 114(11): 3834-3844. doi: 10.1021/jp906146y
    [4] 张元卓, 于兹瀛, 张富民, 肖强, 钟依均, 朱伟东.纳米Li2ZrO3吸收剂原位移除CO2强化水煤气变换反应制氢[J].催化学报, 2012, 33(9): 1572-1577.

    ZHANG Yun-zhuo, YU Zi-ying, ZHANG Fu-ming, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. Li2ZrO3 nanoparticles as absorbent for in-situ removal of CO2 in water-gas shift reaction to enhance H2 production[J]. Chin J Catal, 2012, 33(9): 1572-1577.
    [5] LI H, PAARA J M S, BLEKKAN E A, DE C. Towards efficient hydrogen production from glycerol by sorption enhanced steam reforming[J]. Energy Environ Sci, 2010, 3(8): 1046-1056. doi: 10.1039/b922355j
    [6] 高峰, 李存梅, 王媛, 孙国华, 李开喜.树脂基球状活性炭的制备及对二氧化碳吸附性能的研究[J].燃料化学学报, 2014, 42(1): 116-120. http://www.wenkuxiazai.com/doc/dfc8895816fc700aba68fc48.html

    GAO Feng, LI Cun-mei, WANG Yuan, SUN Guo-hua, LI Kai-xi. Preparation of resin-base spherical activated carbon and study on adsorption properties towards CO2[J]. J Fuel Chem Technol, 2014, 42(1): 116-120. http://www.wenkuxiazai.com/doc/dfc8895816fc700aba68fc48.html
    [7] HU J X, SHANG H, WANG J G, LUO L, XIAO Q, ZHONG Y J, ZHU W D. Highly enhanced selectivity and easy regeneration for the separation of CO2 over N2 on melamine-based microporous organic polymers[J]. Ind Eng Chem Res, 2014, 53(29): 11828-11837. doi: 10.1021/ie501736t
    [8] ZHAO J, SIMEON F, WANG Y, LUO G, HATTON T A. Polyethylenimine-impregnated siliceous mesocellular foam particles as high capacity CO2 adsorbents[J]. RSC Adv, 2012, 2(16): 6509-6519. doi: 10.1039/c2ra20149f
    [9] 李勇, 李磊, 闻霞, 王峰, 赵宁, 肖福魁, 魏伟, 孙予罕.二次嫁接法制备氨基修饰的硅基二氧化碳吸附剂[J].燃料化学学报, 2013, 41(9): 1122-1128. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18261.shtml

    LI Yong, LI Lei, WEN Xia, WANG Feng, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han. Synthesis of amine modified silica for the capture of carbon dioxide by a twice grafting method[J] J Fuel Chem Technol, 2013, 41(9): 1122-1128. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18261.shtml
    [10] 杨刚胜, 曾淦宁, 赵强, 陈徐, 陈盛积, 艾宁.负载型氨基酸离子液体的制备及其对二氧化碳的吸附性能[J].燃料化学学报, 2016, 44(1): 106-112.

    YANG Gang-sheng, ZENG Gan-ning, ZHAO Qiang, CHEN Xu, CHEN Sheng-ji, AI Ning. Preparation of silica gel supported amino acid ionic liquids and their performance capacity towards carbon dioxide[J]. J Fuel Chem Technol, 2016, 44(1): 106-112.
    [11] LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chem Rev, 2011, 112(2): 869-932. https://www.researchgate.net/publication/51704912_Metal-Organic_Frameworks_for_Separations
    [12] 左臣盛, 周思宇, 孙成志, 王兴之, 刘道胜, 徐煇旼, 朴容起, 桂建舟, 刘丹.变温镁基CO2吸附剂的制备及应用I. Na/Mg物质的量比[J].燃料化学学报, 2014, 42(7): 884-889. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18461.shtml

    ZUO Cheng-sheng, ZHOU Si-yu, SUN Cheng-zhi, WANG Xing-zhi, LIU Dao-sheng, XU Hui-min, PIAO Rong-qi, GUI Jian-zhou, LIU Dan. Preparation and application of magnesium-based CO2 sorbent for temperature swing absorption I. Na/Mg mol ratio[J]. J Fuel Chem Technol, 2014, 42(7): 884-889. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18461.shtml
    [13] FLORIN N H, HAARRIS A T. Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2capture-and-release cycles[J]. Chem Eng Sci, 2009, 64(2): 187-191. doi: 10.1016/j.ces.2008.10.021
    [14] XIAO Q, LIU Y F, ZHONG Y J, ZHU W D. A citrate sol-gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties[J]. J Mater Chem, 2011, 21(11): 3838-3842. doi: 10.1039/c0jm03243c
    [15] XIAO Q, TANG X D, LIU Y F, ZHONG Y J, ZHU W D. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013, 7(3): 297-302. doi: 10.1007/s11705-013-1346-1
    [16] XIAO Q, TANG X D, ZHONG Y J, ZHU W D. A facile starch-assisted sol-gel method to synthesize K-doped Li2ZrO3 sorbents with excellent CO2 capture properties[J]. J Am Ceram Soc, 2012, 95(5): 1544-1548. doi: 10.1111/jace.2012.95.issue-5
    [17] SHAN S, JIA Q, JIANG L, LI Q, WANG Y, PENG J. Preparation and kinetic analysis of Li4SiO4 sorbents with different silicon sources for high temperature CO2 capture[J]. Chin Sci Bull, 2012, 57(19): 2475-2479. doi: 10.1007/s11434-012-5188-x
    [18] YIN Z, WANG K, ZHAO P, TANG X. Enhanced CO2 chemisorption properties of Li4SO4, using a water hydration-calcination technique[J]. Ind Eng Chem Res, 2016, 55(4): 1142-1146. doi: 10.1021/acs.iecr.5b03746
    [19] 唐晓丹.纳米Li2ZrO3和Li4SiO4二氧化碳吸收材料制备与表征[D].金华:浙江师范大学, 2012.

    TANG Xiao-dan. Synthesis and characterization of nanosized Li2ZrO3 and Li4SiO4 materials as carbon dioxide sorbents[D]. Jinhua: Zhejiang Normal University, 2012.
    [20] 悦灵丽, 肖强, 钟依均, 朱伟东.金属元素掺杂对硅酸锂材料二氧化碳吸收性能的影响[J].现代化工, 2014, (34): 70-73. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201408020.htm

    YUE Ling-li, XIAO Qiao, ZHONG Yi-jun, ZHU Wei-dong. Influence of metallic element dopant on CO2, absorption properties of Li4SiO4 materials[J] Modern Chem Ind, 2014, (34): 70-73. http://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201408020.htm
    [21] 童沂, 黄雪芹, 许春慧, 肖强, 钟依均, 朱伟东.液相法结合冷冻干燥技术制备Li4SiO4材料及其高温二氧化碳吸收性能[J].物理化学进展, 2015, 04(2): 77-83. doi: 10.12677/JAPC.2015.42010

    TONG Yi, HUANG Xue-qin, XU Chun-hui, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. A liquid phase method combined with freeze-drying technique to lithium silicate materials and their carbon dioxide absorption properties at high temperatures[J]. J Adv Phys Chem, 2015, 04(2): 77-83. doi: 10.12677/JAPC.2015.42010
    [22] VENEGAS M J, FREGOSO-ISRAEL E, ESCAMILLA R, PFEIFFER H. Kinetic and reaction mechanism of CO2 sorption on Li4SiO4: Study of the particle size effect[J]. Ind Eng Chem Res, 2007, 46(8): 2407-2412. doi: 10.1021/ie061259e
    [23] CHEN D L, SHANG H, ZHU W D, KRISHNA R. Transient breakthroughs of CO2/CH4 and C3H6/C3H8 mixtures in fixed beds packed with Ni-MOF-74[J]. Chem Eng Sci, 2014, 117: 407-415. doi: 10.1016/j.ces.2014.07.008
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  29
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-16
  • 修回日期:  2016-05-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-09-10

目录

    /

    返回文章
    返回