留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热改质过程中渣油结构及其重组分溶剂化变化规律研究

刘朝仙 郭爱军 陈坤 王宗贤 储浚 陈建涛

刘朝仙, 郭爱军, 陈坤, 王宗贤, 储浚, 陈建涛. 热改质过程中渣油结构及其重组分溶剂化变化规律研究[J]. 燃料化学学报(中英文), 2016, 44(3): 366-374.
引用本文: 刘朝仙, 郭爱军, 陈坤, 王宗贤, 储浚, 陈建涛. 热改质过程中渣油结构及其重组分溶剂化变化规律研究[J]. 燃料化学学报(中英文), 2016, 44(3): 366-374.
LIU Zhao-xian, GUO Ai-jun, CHEN Kun, WANG Zong-xian, CHU Jun, CHEN Jian-tao. Changes in chemical structure and solvation of heavy oil components during thermal upgrading of a vacuum residue[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 366-374.
Citation: LIU Zhao-xian, GUO Ai-jun, CHEN Kun, WANG Zong-xian, CHU Jun, CHEN Jian-tao. Changes in chemical structure and solvation of heavy oil components during thermal upgrading of a vacuum residue[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 366-374.

热改质过程中渣油结构及其重组分溶剂化变化规律研究

基金项目: 

国家自然科学基金 U1362101

中央高校基本科研业务费专项资金 14CX02120A

山东省自然科学基金 ZR2014BQ030

青岛市自主创新计划应用研究专项 15-9-1-77-jch

中国石油重大专项 PRIKY15002

中国石油重大专项 PRIKY15008

中国石油重大专项 PRIKY15009

详细信息
    通讯作者:

    郭爱军, Tel: 0532-86980607, Fax: 0532-86981787, E-mail: ajguo@upc.edu.cn

  • 中图分类号: TE624

Changes in chemical structure and solvation of heavy oil components during thermal upgrading of a vacuum residue

Funds: 

National Natural Science Foundation of China U1362101

the Fundamental Research Funds for the Central Universities 14CX02120A

the Provincial Natural Science Foundation of Shandong ZR2014BQ030

the Application Research of Independent Innovation Foundation of Qingdao 15-9-1-77-jch

and the China National Petroleum Corporation (CNPC) Grant on Research and Development for Commercial Application of Novel Technologies in Processing Inferior Heavy Oil PRIKY15002

and the China National Petroleum Corporation (CNPC) Grant on Research and Development for Commercial Application of Novel Technologies in Processing Inferior Heavy Oil PRIKY15008

and the China National Petroleum Corporation (CNPC) Grant on Research and Development for Commercial Application of Novel Technologies in Processing Inferior Heavy Oil PRIKY15009

  • 摘要: 以委内瑞拉减压渣油为原料, 采用微型反应釜, 研究了其在410℃、2.0MPa氮气初压下, 不同反应停留时间的热改质过程生成油的化学结构组成及其重组分溶剂化变化规律.通过1H-NMR技术研究了热改质过程生成油中沥青质和重胶质不同化学位移归属氢的转化路径; 并结合改进的Brown-Ladner法分析了热改质过程生成油中沥青质和重胶质的平均分子结构参数变化; 采用蒸汽压渗透法考察了热改质过程生成油中沥青质和重胶质在甲苯溶液中所形成的复合超分子结构的平均相对分子质量.结果表明, 随着热改质程度的加深, 沥青质和重胶质的H/C原子比减小, 供氢能力逐渐下降, 沥青质和重胶质的芳香环共轭程度和fA在体系生焦后(45min) 显著提高; 沥青质的聚集趋势相关值在热改质15min前变化不大, 15min后显著增强, 而重胶质在整个热改质过程中, 其聚集趋势相关值的增势较为缓和; 沥青质和重胶质的聚集趋势相关值差异逐渐增大, 15min时增加了1.5%、25min时增加了50.8%、45min时增加了142.3%, 表明沥青质和重胶质的结构差异越来越明显; 重胶质溶剂化沥青质的能力逐步减弱, 体系的溶剂化参数从0时的32.9%逐步降到15min时的29.5%、25min时的14.1%和45min时的9.6%;热改质生成油的斑点实验等级逐渐增加, 体系的胶体稳定性逐渐降低.
  • 图  1  VNVR热改质过程生成油中甲苯不溶物含量

    Figure  1  Contents of toluene-insolubles in the oil produced by thermal upgrading of VNVR

    图  2  VNVR热改质过程生成油中沥青质和重胶质的含量

    Figure  2  Contents of asphaltenes and heavy resins in the oil produced by thermal upgrading of VNVR

    图  3  VNVR热改质过程生成油中沥青质(a) 和重胶质(b) 的核磁共振氢谱谱图

    Figure  3  1H-NMR spectra of asphaltenes (a) and heavy resins (b) in the oil produced by thermal upgrading of VNVR

    图  4  VNVR热改质过程生成油中沥青质和重胶质的聚集趋势相关值

    Figure  4  GA values of asphaltenes and heavy resins in the oil produced by thermal upgrading of VNVR

    图  5  VNVR改质过程生成油中重胶质对沥青质的溶剂化作用

    Figure  5  Solvation of heavy resins on asphaltenes in the oil produced by thermal upgrading of VNVR

    (a): 0 min; (b): 15 min; (c): 25 min; (d): 45 min

    图  6  VNVR热改质过程生成油斑点实验照片

    Figure  6  Spot pictures of oil from thermal upgrading of VNVR

    (a): 0 min; (b): 15 min; (c): 25 min; (d): 45 min

    表  1  委内瑞拉减压渣油性质

    Table  1  Properties of the Venezuelan vacuum residue

    ρ20/
    (g·cm-3)
    μ100/
    (mm2·s-1)
    Conradson carbon
    residue w/%
    w/%H/C
    (atomic ratio)
    n-C7Asp.
    w/%
    w/(μg·g-1)
    CHSNNiV
    1.053 258 53025.5783.749.584.650.901.3617.4840.3433.66
    下载: 导出CSV

    表  2  VNVR热改质过程生成油中沥青质和重胶质的元素组成及其不同归属氢含量

    Table  2  CHSN elemental composition and 1H-NMR analysis of asphaltenes and heavy resins in the oil produced by thermal upgrading of VNVR

    ItemsAsphaltenesHeavy resins
    0 min15 min25 min45 min0 min15 min25 min45 min
    H w /%7.327.166.846.158.858.117.847.12
    C w/%81.7782.6983.0683.4582.2283.5383.7184.04
    N w/%2.011.971.942.001.521.581.741.79
    S w/%5.505.084.864.674.664.774.594.82
    Odi w/%3.403.103.303.732.752.012.122.23
    H/C (atomic ratio)1.081.040.990.891.291.171.121.02
    HA/HT0.1220.1340.1450.1970.0970.1440.1620.196
    Hα/HT0.1990.2140.2350.2270.2150.2190.2250.262
    Hβ/HT0.4870.4830.4710.4250.5160.4710.4550.406
    Hγ/HT0.1920.1690.1490.1510.1720.1660.1580.136
    Odi: estimated by difference; HA: hydrogen attached to aromatic ring with chemical shift between 6.0 and 9.0; Hα: hydrogen on naphthenic ring or alkyl chain adjacent to aromatic ring with chemical shift between 2.0 and 4.0; Hβ: hydrogen on naphthenic ring or alkyl chain with two or more positions from an aromatic ring with chemical shift between 1.0 and 2.0; Hγ: terminal methyl protons of paraffins or of alkyl side-chains three or more positions from an aromatic ring with chemical shift between 0.5 and 1.0; HT: hydrogen in total of HA, Hα, Hβ and Hγ
    下载: 导出CSV

    表  3  VNVR热改质过程生成油中沥青质和重胶质的平均分子结构参数

    Table  3  Average molecular structural parameters of asphaltenes and heavy resins from reaction oil during thermal upgrading of VNVR

    ItemsAsphaltenesHeavy resins
    0 min15 min25 min45 min0 min15 min25 min45 min
    fA0.550.570.590.660.440.520.550.61
    fN0.190.200.210.200.200.190.190.20
    fP0.260.230.200.140.360.290.260.19
    HAU/CA0.410.420.420.400.580.550.540.53
    usw933.1857.1833.9821.2594.3554.7535.1509.3
    CT*63.559.057.757.140.739.637.335.7
    HT*68.361.457.050.552.644.941.936.3
    ST*1.61.41.31.20.80.80.80.8
    NT*1.31.21.11.10.60.60.70.7
    OT*2.01.71.71.91.00.70.60.7
    RT*15.114.414.815.67.78.28.28.7
    RA*10.810.310.611.74.85.65.76.2
    RN*4.34.14.13.92.92.62.52.5
    RN*/RA*0.400.400.390.330.590.460.440.40
    CA*36.535.035.739.118.420.821.222.5
    fA: ratio of aromatic carbon to total carbons; fN: ratio of naphthenic carbon to total carbons; fP: ratio of paraffinic carbons to total carbons; HAU/CA: condensation degree parameter of aromatic ring system; usw: unit sheet weight
    下载: 导出CSV

    表  4  VNVR热改质过程生成油斑点实验等级

    Table  4  Spot ratings of oil from thermal upgrading of VNVR

    Reaction time t /minSpot ratings
    02
    152
    254
    455
    下载: 导出CSV
  • [1] 姚国欣.委内瑞拉超重原油和加拿大油砂沥青加工现状及发展前景[J].中外能源, 2012, 17(1): 3-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201201003.htm

    YAO Guo-xin. Current status and development prospects for processing of Venezuelan extra-heavy crude and Canadian oil sand bitumen[J]. Sino-Global Energy, 2012, 17(1): 3-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZW201201003.htm
    [2] LI S H, LIU C G, QUE G H, LIANG W J, ZHU Y J. Colloidal structures of three Chinese petroleum vacuum residues[J]. Fuel, 1996, 75(8): 1025-1029. doi: 10.1016/0016-2361(95)00315-0
    [3] ZHAO B, SHAW J M. Composition and size distribution of coherent nanostructures in Athabasca bitumen and Maya crude oil[J]. Energy Fuels, 2007, 21(5): 2795-2804. doi: 10.1021/ef070119u
    [4] INDO K, RATULOWSKI J, DINDORUK B, GAO J L, ZUO J L, MULLINS O C. Asphaltene nanoaggregates measured in a live crude oil by centrifugation[J]. Energy Fuels, 2009, 23(9): 4460-4469. doi: 10.1021/ef900369r
    [5] CHANG C L, FOGLER H S. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 2. Study of the asphaltene-amphiphile interactions and structures using fourier transform infrared spectroscopy and small-angle x-ray scattering techniques[J]. Langmuir, 1994, 10(6): 1758-1766. doi: 10.1021/la00018a023
    [6] GONZÁLEZ G, NEVES G B M, SARAIVA S M, LUCAS E F, SOUSA M D A D. Electrokinetic characterization of asphaltenes and the asphaltenes-resins interaction[J]. Energy Fuels, 2003, 17(4): 879-886. doi: 10.1021/ef020249x
    [7] LEÓN O, CONTRERAS E, ROGEL E, DAMBAKLI G, ESPIDEL J, ACEVEDO S. The influence of the adsorption of amphiphiles and resins in controlling asphaltene flocculation[J]. Energy Fuels, 2001, 15(5): 1028-1032. doi: 10.1021/ef010032n
    [8] LEÓN O, CONTRERAS E, ROGEL E, DAMBAKLI G, ACEVEDO S, CARBOGNANI L, ESPIDEL J. Adsorption of native resins on asphaltene particles: A correlation between adsorption and activity[J]. Langmuir, 2002, 18(13): 5106-5112. doi: 10.1021/la011394q
    [9] DANIEL M G, ANDERSEN S I. Thermodynamic characterization of asphaltene-resin interaction by microcalorimetry[J]. Langmuir, 2004, 20(11): 4559-4565. doi: 10.1021/la0499315
    [10] SOORGHALI F, ZOLGHADR A, AYATOLLAHI S. Effects of native and non-native resins on asphaltene deposition and the change of surface topography at different pressures: An experimental investigation[J]. Energy Fuels, 2015, 29(9): 5487-5494. doi: 10.1021/acs.energyfuels.5b00366
    [11] 王齐, 郭磊, 王宗贤, 沐宝泉, 郭爱军, 刘贺.委内瑞拉减压渣油供氢热转化基础研究[J].燃料化学学报, 2012, 40(11): 1317-1322. doi: 10.1016/S1872-5813(13)60001-8

    WANG Qi, GUO Lei, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, LIU He. Hydrogen donor visbreaking of Venezuelan vacuum residue[J]. J Fuel Chem Technol, 2012, 40(11): 1317-1322. doi: 10.1016/S1872-5813(13)60001-8
    [12] GOULD K A, WIEHE I A. Natural hydrogen donors in petroleum resids[J]. Energy Fuels, 2006, 21(3): 1199-1204.
    [13] WANG Z X, JI S F, LIU H, CHEN K, GUO A J. Hydrogen transfer of petroleum residue subfractions during thermal processing under hydrogen[J]. Energy Technol, 2015, 3(3): 259-264. doi: 10.1002/ente.201402190
    [14] GUO A J, WANG Z Q, ZHANG H J, ZHANG X J, WANG Z X. Hydrogen transfer and coking propensity of petroleum residues under thermal processing[J]. Energy Fuels, 2010, 24(5): 3093-3100. doi: 10.1021/ef100172r
    [15] BROWN J K, LADNER W R. A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy Ⅱ. A comparison with infra-red measurement and the conversion to carbon structure[J]. Fuel, 1960, 39: 87-96.
    [16] 刘贺, 陈坤, 王宗贤, 郭爱军. 1H-NMR评价不同重油缓和热转化过程中的相对供氢能力[J].燃料化学学报, 2013, 41(10): 1191-1198. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18273.shtml

    LIU He, CHEN Kun, WANG Zong-xian, GUO Ai-jun. Evaluation of relative hydrogen-donating abilities of different heavy oils during mild thermal conversion by 1H-NMR[J]. J Fuel Chem Technol, 2013, 41(10): 1191-1198. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18273.shtml
    [17] DICKIE J P, YEN T F. Macrostructures of asphaltic fractions by various instrumental methods[J]. Anal Chem, 1967, 39(14): 1847-1852. doi: 10.1021/ac50157a057
    [18] 李传, 王继乾, 隋李涛, 崔敏, 邓文安.委内瑞拉稠油沥青质的XPS研究[J].石油学报:石油加工, 2013, 29(3): 459-463. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201303017.htm

    LI Chuan, WANG Ji-qian, SUI Li-tao, CUI Min, DENG Wen-an. Study on XPS of Venezuela heavy oil asphaltene[J]. Acta Pet Sin (Pet Proc Sect), 2013, 29(3): 459-463. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201303017.htm
    [19] 王治卿.渣油热反应体系胶体化学与氢转移行为研究[D].青岛:中国石油大学(华东), 2006.

    WANG Zhi-qing. Research on the colloidal stability and hydrogen-transfer of vacuum residue during thermal conversion[D]. Qingdao: China University of Petroleum, 2006.
    [20] SEDGHI M, GOUAL L, WELCH W, KUBELKA J. Effect of asphaltene structure on association and aggregation using molecular dynamics[J]. J Phys Chem B, 2013, 117(18): 5765-5776. doi: 10.1021/jp401584u
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  35
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-12
  • 修回日期:  2016-01-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-03-30

目录

    /

    返回文章
    返回