留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

nMoOx·HZSM-5催化正丁烷裂解增产丙烯性能研究

陈亮 李明航 苗杰 谈冠希 靳广洲

陈亮, 李明航, 苗杰, 谈冠希, 靳广洲. nMoOx·HZSM-5催化正丁烷裂解增产丙烯性能研究[J]. 燃料化学学报(中英文), 2018, 46(7): 864-870.
引用本文: 陈亮, 李明航, 苗杰, 谈冠希, 靳广洲. nMoOx·HZSM-5催化正丁烷裂解增产丙烯性能研究[J]. 燃料化学学报(中英文), 2018, 46(7): 864-870.
CHEN Liang, LI Ming-hang, MIAO Jie, TAN Guan-xi, JIN Guang-zhou. Study on n-butane catalytic cracking for promoting propylene production over nMoOx·HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 864-870.
Citation: CHEN Liang, LI Ming-hang, MIAO Jie, TAN Guan-xi, JIN Guang-zhou. Study on n-butane catalytic cracking for promoting propylene production over nMoOx·HZSM-5[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 864-870.

nMoOx·HZSM-5催化正丁烷裂解增产丙烯性能研究

基金项目: 

国家重点基础研究发展计划 973 program

国家重点基础研究发展计划 2012CB215002

详细信息
  • 中图分类号: TQ426.8

Study on n-butane catalytic cracking for promoting propylene production over nMoOx·HZSM-5

Funds: 

the National Basic Research Program of China 973 program

the National Basic Research Program of China 2012CB215002

More Information
  • 摘要: 采用等体积浸渍法制备了nMoOx·HZSM-5系列单相复合体,用XRD、NH3-TPD、Py-FTIR、BET、SEM等技术对其物相结构、表面酸性、比表面积进行了表征。在连续固定床微反装置中对nMoOx·HZSM-5单相复合体进行了催化正丁烷裂解性能的评价。结果表明,部分活性组分Mo以MoOx原子簇的形式定位于HZSM-5分子筛的Z形和直形孔道交叉孔处,与分子筛的骨架氧配位形成nMoOx·HZSM-5单相复合体,引起分子筛的骨架收缩,相应的晶胞参数及晶胞体积减小,比表面积下降;随Mo用量的增大,nMoOx·HZSM-5单相复合体的酸量呈先增加后减小趋势;在反应温度625℃,体积空速5600 h-1条件下,Mo用量为0.75%制备的nMoOx·HZSM-5-0.75%单相复合体催化正丁烷裂解反应的转化率为73.83%,略低于HZSM-5分子筛,但丙烯收率却达到了13.13%,较HZSM-5分子筛提高2个百分点以上,表现出较好的增产丙烯效果。
  • 图  1  不同Mo用量的nMoOx·HZSM-5单相复合体的XRD谱图

    Figure  1  XRD patterns of nMoOx·HZSM-5 single-phase complex with different dosages of Mo

    图  2  HZSM-5分子筛和nMoOx·HZSM-5单相复合体的SEM照片

    Figure  2  SEM images of HZSM-5 and nMoOx·HZSM-5 single-phase complex

    (a): HZSM-5; (b): nMoOx·HZSM-5-0.5%; (c): nMoOx·HZSM-5-0.75%; (d): nMoOx·HZSM-5-1.0%; (e): nMoOx·HZSM-5-1.5%; (f): nMoOx·HZSM-5-2.0%; (g): nMoOx

    图  3  不同Mo用量的nMoOx·HZSM-5单相复合体的NH3-TPD谱图

    Figure  3  NH3-TPD profiles of nMoOx·HZSM-5 single-phase complex with different dosages of Mo·HZSM-3.0%; (h): nMoOx·HZSM-5-5.0%

    图  4  不同Mo用量的nMoOx·HZSM-5单相复合体吡啶红外光谱谱图

    Figure  4  Py- FTIR spectra of nMoOx·HZSM-5 single-phase complex with different dosages of Mo

    图  5  产物气相色谱图

    Figure  5  GC spectra of product

    图  6  不同Mo用量nMoOx·HZSM-5单相复合体的正丁烷裂解转化率

    Figure  6  n-butane conversion of nMoOx·HZSM-5 single-phase complex with different dosages of Mo

    图  7  不同Mo用量的nMoOx·HZSM-5单相复合体催化正丁烷裂解反应的丙烯收率和甲烷收率

    Figure  7  Propylene yield and methane yield of n-butane cracking reaction catalyzed by nMoOx·HZSM-5 single-phase complex with different dosage of Mo

    表  1  不同Mo用量的nMoOx·HZSM-5单相复合体的晶胞参数及晶胞体积

    Table  1  Lattice parameters(a, b, c) and cell volume(V) of nMoOx·HZSM-5 single-phase complex with different dosages of Mo

    Mo w/% a/nm b/nm c/nm V/nm3
    0 2.0003 2.0181 1.3459 5.4333
    0.5 1.9998 2.0189 1.3453 5.4318
    0.75 2.0000 2.0187 1.3455 5.4327
    1.0 1.9985 2.0187 1.3461 5.4311
    1.5 1.9978 2.0196 1.3457 5.4296
    2.0 1.9999 2.0188 1.3446 5.4291
    3.0 1.9987 2.0178 1.3445 5.4225
    5.0 1.9986 2.0175 1.3454 5.4241
    下载: 导出CSV

    表  2  nMoOx·HZSM-5单相复合体的比表面积

    Table  2  Specific surface area of nMoOx·HZSM-5 single-phase complex

    Mo w/% ABET/(m2·g-1)
    0 399
    0.5 395
    0.75 388
    1.0 372
    1.5 365
    2.0 356
    3.0 354
    5.0 340
    下载: 导出CSV

    表  3  nMoOx·HZSM-5单相复合体的酸量

    Table  3  Acidic amount of nMoOx·HZSM-5 single-phase complex

    Mo w/% Total /(mmol·g-1) Weak acid/% Strong acid/%
    0 0.632 54.42 45.58
    0.5 0.926 57.79 42.21
    0.75 1.035 58.54 41.46
    1.0 0.953 58.73 41.27
    1.5 0.951 60.04 39.96
    2.0 0.793 61.41 38.59
    3.0 0.756 62.39 37.61
    5.0 0.731 63.44 36.56
    下载: 导出CSV

    表  4  nMoOx·HZSM-5单相复合体的B酸和L酸酸量

    Table  4  Amounts of B acid and L acid sites determined by Py-IR of nMoOx·HZSM-5 single-phase complex

    Mo w/% Brønsted/ (mmol·g-1) Lewis/ (mmol·g-1) L/B
    0 0.495 0.137 0.277
    0.5 0.767 0.159 0.207
    0.75 0.831 0.204 0.246
    1.0 0.780 0.173 0.222
    1.5 0.622 0.328 0.527
    下载: 导出CSV

    表  5  产物定性分析

    Table  5  Identification result of product

    Retention time t/min Peak substance Retention time t/min Peak substance
    8.122 methane 14.187 propylene
    8.948 ethane 16.613 isobutane
    9.641 ethylene 17.128 n-butane
    11.561 propane
    下载: 导出CSV
  • [1] 王梦瑶, 周嘉文, 任天华, 孟祥海, 张睿, 刘海燕.催化裂化多产丙烯[J].化工进展, 2015, 34(6):1619-1624. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shihjs200403013

    WANG Meng-yao, ZHOU Jia-wen, REN Tian-hua, MENG Xiang-hai, ZHANG Rui, LIU Hai-yan. Catalytic cracking processes for maximizing propylene production[J]. Chem Ind Eng Prog, 2015, 34(6):1619-1624. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shihjs200403013
    [2] BOSWELL C, WEDDLE N, MEEHAN J, TERRY L. Propylene boosts prices downstream[J]. ICIS Chem Business, 2011, 279(4):20-21. http://connection.ebscohost.com/c/articles/58024109/propylene-boosts-prices-downstream
    [3] XIN L, AMIT K, YING H, HARSHUL V T, MARKTUS A A, FATEME R, DOUGLAS K L, ALI A R. Light olefins from renewable resources:Selective catalytic dehydration of bioethanol to propylene over zeolite and transition metal oxide catalysts[J]. Catal Today, 2016, 276(15):62-77. http://www.sciencedirect.com/science/article/pii/S0920586116300608
    [4] SHINYA H, AZUSA M, SHUHEI W, RYUICHI K, FUYUKI Y. Catalytic conversion of light hydrocarbons to propylene over MFI-zeolite/metal-oxide composites[J]. Microporous Mesoporous Mater, 2016, 233(15):125-132. http://www.sciencedirect.com/science/article/pii/S138718111500709X
    [5] 陈硕, 王定博, 吉媛媛, 白杰.丙烯为目的产物的技术进展[J].石油化工, 2011, 40(2):217-224. http://epub.cqvip.com/articledetail.aspx?id=1000000437322

    CHEN-Shuo, WANG Ding-bo, JI Yuan-yuan, BAI Jie. Development in on-purpose propylene technology[J]. Petrochem Technol, 2011, 40(2):217-224. http://epub.cqvip.com/articledetail.aspx?id=1000000437322
    [6] WANG H. Advances and prospect of low-carbon olefin production technology[J]. Sino Global Energy, 2010, 15(8):62-67. doi: 10.1007/s11244-012-9912-1
    [7] 杨为民.碳四烃转化与利用技术研究进展及发展前景[J].化工进展, 2015, 34(1):1-9. http://www.oalib.com/paper/4206983

    WANG Wei-min. Progress and perspectives on conversion and utilization of C4 hydrocarbons[J]. Chem Ind Eng Prog, 2015, 34(1):1-9. http://www.oalib.com/paper/4206983
    [8] GANG W, XU C, GAO J. Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production[J]. Fuel Process Technol, 2008, 89(9):864-873. doi: 10.1016/j.fuproc.2008.02.007
    [9] LI X H, LI C Y, ZHANG J F, YANG C H, SHAN H H. Effects of temperature and catalyst to oil weight ratio on the catalytic conversion of heavy oil to propylene using ZSM-5 and USY catalysts[J]. J Nat Gas Chem, 2007, 16(1):92-99. doi: 10.1016/S1003-9953(07)60033-4
    [10] ZHAO Z T, LIU Y, WANG F, LI X K, DENG S P, XU J, WEI W, WANG F. Life cycle assessment of primary energy demand and greenhouse gas (GHG) emissions of four propylene production pathways in China[J]. J Clean Prod, 2017, 163(9):285-292. https://www.researchgate.net/publication/290522544_Life_cycle_assessment_of_primary_energy_demand_and_GHG_emissions_of_four_propylene_production_pathways_in_China
    [11] RICCA A, PALMA V, LAQUANIELLO G, PALO E, SALLADINI A. Highly selective propylene production in a membrane assisted catalytic propane dehydrogenation[J]. Chem Eng J, 2017, 330(22):1119-1127. http://www.sciencedirect.com/science/article/pii/S1385894717314055
    [12] EPELDE E, GAYUBO A G, OLAZAR M, BILBAO J, AGUAYO A T. Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene[J]. Chem Eng J, 2014, 251(16):80-91. http://www.sciencedirect.com/science/article/pii/S1385894714004926
    [13] 谢朝钢.催化裂解过程丙烯选择性的影响因数探究[J].石油学报(石油加工), 2018, 34(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb-syjg201801001

    XIE Chao-gang. Study on inflencing factors of Propylene selectivity in a deep catalytic cracking process[J]. Acta Pet Sin(Pet Process Sect), 2018, 34(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb-syjg201801001
    [14] WANG P, TIAN X, YANG C, YANG C H, YUAN Z H. Economics-oriented nmpc of two-stage-riser catalytic pyrolysis processes for maximizing propylene yield[J]. IFAC-Papers Online, 2015, 48(8):32-37. doi: 10.1016/j.ifacol.2015.08.153
    [15] KOTREL S, KNOZINGER H, GATES B C. The Haag-Dessau mechanism of protolytic cracking of alkanes[J]. Microporous Mesoporous Mater, 2000, 35(99):11-20. http://www.sciencedirect.com/science/article/pii/S1387181199002048
    [16] XU X, LI C, SHAN H. Effect of phosphorus on novel bifunctional additives for enhancing the production of propylene and removal of SO2, in FCC process[J]. J Mol Catal A:Chem, 2011, 340(1/2):99-107. http://www.sciencedirect.com/science/article/pii/S1381116911001154
    [17] VERSTRAETE J, COUPARD V, THOMAZEAU C, ETIENNE P. Study of direct and indirect naphtha recycling to a resid FCC unit for maximum propylene production[J]. Catal Today, 2005, 106(1/4):62-71. http://www.sciencedirect.com/science/article/pii/S0920586105005407
    [18] MOHIUDDIN E, SA Y M, MDLELENI M M, SINCADU N, David Key, TSHABALALA T. Synthesis of ZSM-5 from impure and beneficiated Grahamstown kaolin:Effect of kaolinite content, crystallisation temperatures and time[J]. Appl Clay Sci, 2016, 119(2):213-221. http://www.sciencedirect.com/science/article/pii/S0169131715301368
    [19] SHIMADA I, TAKIZAWA K, FUKUNAGA H, TAKAHASHI N, TAKATSUKA T. Catalytic cracking of polycyclic aromatic hydrocarbons with hydrogen transfer reaction[J]. Fuel, 2015, 161(28):207-214. http://www.sciencedirect.com/science/article/pii/S0016236115008601
    [20] JIN H, ANSARI M B, PARK S E. Sulfonic acid functionalized mesoporous ZSM-5:Synthesis, characterization and catalytic activity in acidic catalysis[J]. Catal Today, 2015, 245(33):116-121. http://www.sciencedirect.com/science/article/pii/S0920586114003915
    [21] CHEN X, DONG M, NIU X J, WANG K, CHEN G, FAN W B, WANG J G, QIN Z F. Influence of Zn species in HZSM-5 on ethylene aromatization[J]. Chin J Catal, 2015, 36(6):880-888. doi: 10.1016/S1872-2067(14)60289-8
    [22] KONINGSVELD H V, BEKKUM H V, JANSEN J C. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy[J]. Acta Crystallogr, 1987, 43(2):127-132. doi: 10.1107/S0108768187098173
    [23] ZHOU D, MA D, LIU X, BAO X. A simulation study on the absorption of molybdenum species in the channels of HZSM-5 zeolite[J]. J Mol Catal A:Chem, 2001, 168(1/2):225-232. http://www.sciencedirect.com/science/article/pii/S138111690000532X
    [24] QI C, WANG Y, DING X, SU H J. Catalytic cracking of light diesel over Au/ZSM-5 catalyst for increasing propylene production[J]. Chin J Catal, 2016, 37(10):1747-1754. doi: 10.1016/S1872-2067(16)62499-3
    [25] PARK S, BILIGETU T, WANG Y, NISHITOBA T, KONDO J N, YOKOI T. Acidic and catalytic properties of ZSM-5 zeolites with different Al distributions[J]. Catal Today, 2017, 303(20):64-70. http://www.sciencedirect.com/science/article/pii/S0920586117305059
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  62
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-13
  • 修回日期:  2018-05-16
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回