留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成条件对磷钨酸负载的金属有机框架催化剂氧化脱硫性能的影响

张东旭 宋华 苑丹丹

张东旭, 宋华, 苑丹丹. 合成条件对磷钨酸负载的金属有机框架催化剂氧化脱硫性能的影响[J]. 燃料化学学报(中英文), 2019, 47(2): 183-190.
引用本文: 张东旭, 宋华, 苑丹丹. 合成条件对磷钨酸负载的金属有机框架催化剂氧化脱硫性能的影响[J]. 燃料化学学报(中英文), 2019, 47(2): 183-190.
ZHANG Dong-xu, SONG Hua, YUAN Dan-dan. Effect of synthesis conditions on the catalytic performance of phosphotungstic acid encapsulated metal-organic framework in the oxidative desulfurization[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 183-190.
Citation: ZHANG Dong-xu, SONG Hua, YUAN Dan-dan. Effect of synthesis conditions on the catalytic performance of phosphotungstic acid encapsulated metal-organic framework in the oxidative desulfurization[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 183-190.

合成条件对磷钨酸负载的金属有机框架催化剂氧化脱硫性能的影响

基金项目: 

中国石油和化学工业联合会科技指导项目 2016-09-02

详细信息
  • 中图分类号: O643;TQ53

Effect of synthesis conditions on the catalytic performance of phosphotungstic acid encapsulated metal-organic framework in the oxidative desulfurization

Funds: 

the Mentoring Project of China Petroleum and Chemical Industry Federation 2016-09-02

More Information
  • 摘要: 通过一步水热合成法制备了大比表面积、高脱硫活性的磷钨酸(HPW)负载的金属有机框架HPW@MIL-101(Cr)催化剂,对其进行了FT-IR、XRD和氮吸附等表征,并研究了合成时间、合成温度、酸碱度及HPW负载量等参数对催化剂脱硫性能的影响。结果表明,随着合成时间的延长、合成温度的提高,HPW@MIL-101(Cr)孔道有序度提高;合成温度低于等于140℃时,不能形成MIL-101(Cr)晶体结构;酸性合成条件合成的HPW@MIL-101(Cr)的孔道有序度降低;随着HPW负载量的增加,HPW@MIL-101(Cr)的催化性能呈现先升高后降低的趋势。在12 h、220℃和中性条件下制备得到的负载量为3.5 g的HPW@MIL-101(Cr)催化剂具有最佳脱硫活性;在模拟油20 mL、催化剂用量0.24 g、氧硫比为8和50℃条件下反应120 min,对苯并噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩脱硫率分别为99%、100%和99%;与HPW相比,苯并噻吩脱硫率提高了2.4倍。
  • 图  1  不同合成时间制备的催化剂的XRD谱图

    Figure  1  XRD patterns of catalysts with different synthesis time

    a: HPW(3.5)@MIL-101(Cr)-2-220-zh; b: HPW(3.5)@MIL-101(Cr)-4-220-zh; c: HPW(3.5)@MIL-101(Cr)-8-220-zh; d: HPW(3.5)@MIL-101(Cr)-12-220-zh

    图  2  不同合成温度制备的催化剂XRD谱图

    Figure  2  XRD patterns of catalysts at different synthesis temperatures

    a: HPW(3.5)@MIL-101(Cr)-12-100-zh; b: HPW(3.5)@MIL-101(Cr)-12-140-zh; c: HPW(3.5)@MIL-101(Cr)-12-180-zh; d: HPW(3.5)@MIL-101(Cr)-12-220-zh

    图  3  不同酸碱度催化剂的XRD谱图

    Figure  3  XRD patterns of catalysts with different acidity/alkalinity

    a: HPW(3.5)@MIL-101(Cr)-12-220-s; b: HPW(3.5)@MIL-101(Cr)-12-220-zh; c: HPW(3.5)@MIL-101(Cr)-12-220-j

    图  4  不同合成时间制备的催化剂的FT-IR谱图

    Figure  4  FT-IR spectra of catalysts with different synthesis time

    a: HPW(3.5)@MIL-101(Cr)-2-220-zh; b: HPW(3.5)@MIL-101(Cr)-4-220-zh; c: HPW(3.5)@MIL-101(Cr)-8-220-zh; d: HPW(3.5)@MIL-101(Cr)-12-220-zh

    图  5  不同合成温度制备的催化剂的FT-IR谱图

    Figure  5  FT-IR spectra of catalysts at different synthesis temperatures

    a: HPW(3.5)@MIL-101(Cr)-12-100-zh; b: HPW(3.5)@MIL-101(Cr)-12-140-zh; c: HPW(3.5)@MIL-101(Cr)-12-180-zh; d: HPW(3.5)@MIL-101(Cr)-12-220-zh

    图  6  不同酸碱度催化剂的FT-IR谱图

    Figure  6  FT-IR spectra of catalysts with different acidity/alkalinity

    a: HPW(3.5)@MIL-101(Cr)-12-220-s; b: HPW(3.5)@MIL-101(Cr)-12-220-zh; c: HPW(3.5)@MIL-101(Cr)-12-220-j

    图  7  合成时间对HPW(3.5)@MIL-101(Cr)-x-220-zh催化剂BT催化氧化脱硫性能的影响

    Figure  7  Effect of synthesis time on the ODS performance of HPW(3.5)@MIL-101(Cr)-x-220-zh

    图  8  合成温度对HPW(3.5)@MIL-101(Cr)-12-y-zh催化剂BT催化氧化脱硫性能的影响

    Figure  8  Effect of synthesis temperature on the ODS performance of HPW(3.5)@MIL-101(Cr)-12-y-zh

    图  9  HPW负载量对HPW(a)@MIL-101 (Cr)-12-220-zh催化剂BT催化氧化脱硫性能的影响

    Figure  9  Effect of the HPW loading on the ODS performance of the HPW(a)@MIL-101(Cr)-12-220-zh catalyst

    图  10  HPW(3.5)@MIL-101(Cr)-12- 220-zh与HPW脱硫性能比较

    Figure  10  A comparison of HPW(3.5)@MIL-101(Cr)-12-220-zh and HPW in their catalytic performance in ODS

    表  1  催化剂的N2吸附数据

    Table  1  N2 adsorption data of various catalysts

    Sample ABET /(m2·g-1) Pore volume v/(cm3·g-1) Pore size d/nm
    HPW 13 10.46 17.9
    MIL-101(Cr) 2465 0.93 3.1
    HPW(3.5)@MIL-101(Cr)-2-220-zh 798 0.49 5.3
    HPW(3.5)@MIL-101(Cr)-4-220-zh 871 0.43 4.7
    HPW(3.5)@MIL-101(Cr)-8-220-zh 984 0.32 2.9
    HPW(3.5)@MIL-101(Cr)-12-220-zh 1054 0.31 2.7
    HPW(3.5)@MIL-101(Cr)-12-100-zh 156 7.48 9.1
    HPW(3.5)@MIL-101(Cr)-12-140-zh 214 7.56 8.6
    HPW(3.5)@MIL-101(Cr)-12-180-zh 899 0.39 3.5
    HPW(3.5)@MIL-101(Cr)-12-220-s 813 0.37 3.3
    HPW(3.5)@MIL-101(Cr)-12-220-j 1182 0.31 2.8
    HPW(0.5)@MIL-101(Cr)-12-220-zh 1475 0.51 3.0
    HPW(2.0)@MIL-101(Cr)-12-220-zh 1213 0.39 2.8
    HPW(5.0)@MIL-101(Cr)-12-220-zh 916 0.29 2.6
    下载: 导出CSV

    表  2  HPW(3.5)@MIL-101(Cr)-12-220-z催化剂BT催化氧化脱硫性能的影响

    Table  2  Effect of synthesis environment on the ODS performance of HPW(3.5)@MIL-101(Cr)-12-220-z catalysts

    Catalyst HPW(3.5)@MIL-101
    (Cr)-12-220-s (acidic)
    HPW(3.5)@MIL-101
    (Cr)-12-220-zh (neutral)
    HPW(3.5)@MIL-101
    (Cr)-12-220-j (alkalic)
    BT removal η/% 68 99 85
    下载: 导出CSV

    表  3  其他油品的氧化脱硫性能

    Table  3  Oxidative desulfurization results

    Sulfur removal η/% TP BT DBT 4, 6-DMDBT
    58 99 100 99
    下载: 导出CSV
  • [1] ZHU W S, LI H M, JIANG X, YAN Y S, LU J D, XIA J X. Oxidative desulfurization of fuels catalyzed by peroxotungsten and peroxomolybdenum complexes in ionic liquids[J]. Energy Fuels, 2007, 21(5):2514-2516. doi: 10.1021/ef700310r
    [2] HUANG D, WANG Y J, YANG L M, LUO G S. Chemical oxidation of dibenzothiophene with a directly combined amphiphilic catalyst for deep desulfurization[J]. Ind Eng Chem Res, 2006, 45:1880-1885. doi: 10.1021/ie0513346
    [3] CAMPOS-MARTIN J M, CAPEL-SANCHEZ M C, PEREZ-PRESAS P, FIERRO J L G. Oxidative processes of desulfurization of liquid fuels[J]. J Chem Technol Biotechnol, 2010, 85:879-890. doi: 10.1002/jctb.v85:7
    [4] KOMINTARACHAT C, TRAKARNPRUK W. Oxidative desulfurization using polyoxometalates[J]. Ind Eng Chem Res, 2006, 45:1853-1856. doi: 10.1021/ie051199x
    [5] YUAN D, SONG H, SONG H L, YOU M Y, WANG B H, LI F, HAO Y L, YU Q. Heterogeneous oxidative desulfurization for model fuels using novel PW-coupled polyionic liquids with carbon chains of different lengths[J]. J Taiwan Inst Chem E, 2017, 76:83-88. doi: 10.1016/j.jtice.2017.04.013
    [6] LI H M, HE L N, LU J D, ZHU W S, JIANG X, WANG Y, YOU Y S. Deep oxidative desulfurization of fuels catalyzed by phosphotungstic acid in ionic liquids at room temperature[J]. Energy Fuels, 2009, 23:1354-1357. doi: 10.1021/ef800797n
    [7] HU X F, LU Y K, DAI F N, LIU C G, LIU Y Q. Host-guest synthesis and encapsulation of phosphotungstic acid in MIL-101 via "bottle around ship":An effective catalyst for oxidative desulfurization[J]. Microporous Mesoporous Mater, 2013, 170:36-44. doi: 10.1016/j.micromeso.2012.11.021
    [8] ZHENG J J, JIAO Z B. Modified Bi2WO6 with metal-organic frameworks for enhanced photocatalytic activity under visible light[J]. J Colloid Interf Sci, 2017, 488:234-239. doi: 10.1016/j.jcis.2016.11.007
    [9] DING J W, WANG R. A new green system of HPW@MOFs catalyzed desulfurization using O2 as oxidant[J]. Chin Chem Lett, 2016, 27(5):655-658. doi: 10.1016/j.cclet.2016.03.005
    [10] CHEN M, YAN J Q, TAN Y, LI Y F, WU Z M, PAN L S, LIU Y J. Hydroxyalkylation of phenol with formaldehyde to bisphenol F catalyzed by Keggin phosphotungstic acid encapsulated in metal-organic frameworks MIL-100(Fe or Cr) and MIL-101(Fe or Cr)[J]. Ind Eng Chem Res, 2015, 54(47):11804-11813. doi: 10.1021/acs.iecr.5b02746
    [11] ZHOU Z Y, CHENG B H, MA C, XU F, XIAO J, XIA Q B, LI Z. Flexible and mechanically-stable MIL-101(Cr)@PFs for efficient benzene vapor and CO2 adsorption[J]. RSC Adv, 2015, 5(114):94276-94282. doi: 10.1039/C5RA17270E
    [12] YANG X, LIU J, FAN K, RONG L. Hydrocracking of jatropha oil over non-sulfided PTA-NiMo/ZSM-5 catalyst[J]. Sci Rep, 2017, 7:41654. doi: 10.1038/srep41654
    [13] WAN H, CHEN C, WU Z W, QUE Y G, FENG Y, WANG W, WANG L, GUAN G F, LIU X Q. Encapsulation of heteropolyanion-based ionic liquid within the metal-organic framework MIL-100(Fe) for biodiesel production[J]. ChemCatChem, 2015, 7(3):441-449. doi: 10.1002/cctc.v7.3
    [14] ZHU Y F, ZHU M Y, KANG L H, YU F, DAI B. Phosphotungstic acid supported on mesoporous graphitic carbon nitride as catalyst for oxidative desulfurization of fuel[J]. Ind Eng Chem Res, 2015, 54(7):2040-2047. doi: 10.1021/ie504372p
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  37
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 修回日期:  2018-12-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-02-10

目录

    /

    返回文章
    返回