留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝源对Ni/Al2O3催化剂结构及其CO2-CH4重整性能的影响

何小强 莫文龙 覃松 马凤云

何小强, 莫文龙, 覃松, 马凤云. 铝源对Ni/Al2O3催化剂结构及其CO2-CH4重整性能的影响[J]. 燃料化学学报(中英文), 2020, 48(2): 221-230.
引用本文: 何小强, 莫文龙, 覃松, 马凤云. 铝源对Ni/Al2O3催化剂结构及其CO2-CH4重整性能的影响[J]. 燃料化学学报(中英文), 2020, 48(2): 221-230.
HE Xiao-qiang, MO Wen-long, QIN Song, MA Feng-yun. Effect of aluminum source on the structure and performance of Ni/Al2O3 catalysts in CO2-CH4 reforming[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 221-230.
Citation: HE Xiao-qiang, MO Wen-long, QIN Song, MA Feng-yun. Effect of aluminum source on the structure and performance of Ni/Al2O3 catalysts in CO2-CH4 reforming[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 221-230.

铝源对Ni/Al2O3催化剂结构及其CO2-CH4重整性能的影响

基金项目: 

新疆维吾尔自治区自然科学基金 2018D01C034

详细信息
  • 中图分类号: O643.32

Effect of aluminum source on the structure and performance of Ni/Al2O3 catalysts in CO2-CH4 reforming

Funds: 

the National Science Foundation of Xinjiang Uyghur Autonomous Region 2018D01C034

More Information
  • 摘要: 以三种不同铝源采用溶液燃烧法制备了系列Ni/Al2O3催化剂,通过XRD、H2-TPR、NH3-TPD、N2吸附-脱附、TG-DTG和TPH等分析方法对反应前后催化剂进行了表征,研究了铝源对Ni/Al2O3催化剂结构、表面性质及其CO2-CH4重整性能的影响。结果表明,以Al(NO33·9H2O为铝源制备的NiNO-AlNO催化剂比表面积较大,达102 m2/g;高温还原峰面积大,峰型更为弥散;且载体Al2O3具有一定的结晶性。而以Al2(SO43·18H2O和AlCl3·6H2O为铝源制备的NiNO-AlSO和NiNO-AlCl催化剂,其载体以无定型Al2O3存在,活性组分Ni晶粒粒径大、分散性差,还原峰面积较小,与载体的相互作用较弱。其中,由于硫酸铝较为稳定,需要在更高温度下才能转化为Al2O3,且所制备NiNO-AlSO催化剂中残留有含硫物质,使得其表面酸性较强。评价结果显示,NiNO-AlNO催化剂活性较高,稳定性好,CH4转化率为31.21%,CO2转化率为48.97%。积炭分析结果发现,NiNO-AlNO催化剂表面积炭量最少,沉积炭主要以无定型态存在,具有良好的抗积炭性能。
  • 图  1  催化剂评价装置示意图

    Figure  1  Schematic diagram of the catalyst evaluation device

    图  2  三种催化剂样品焙烧后和还原后的XRD谱图

    Figure  2  XRD patterns of three catalyst samples after calcination (a) and after reduction (b)

    图  3  焙烧后催化剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of three catalyst samples after calcination

    图  4  还原后三种样品的NH3-TPD谱图

    Figure  4  NH3-TPD profiles of three catalysts after reduction

    图  5  三种催化剂焙烧后N2吸附-脱附等温线和孔径分布曲线

    Figure  5  N2 adsorption-desorption isotherms (a) and pore size distributions (b) of three catalysts after reduction

    图  6  三种铝源催化剂CH4转化率和CO2转化率

    Figure  6  Conversions of CH4 (a) and CO2 (b) for CH4-CO2 reforming over three catalysts

    图  7  三种铝源催化剂的H2和CO选择性

    Figure  7  Selectivity to H2 (a) and CO (b) for CH4-CO2 reforming over three catalysts

    图  8  三种铝源催化剂的H2/CO体积比

    Figure  8  Ratio of H2 to CO in the product for CH4-CO2 reforming over three catalysts

    图  9  三种铝源催化剂的性能比较

    Figure  9  A comparison of three catalysts in their activity and product selectivity for the CH4-CO2 reforming

    图  10  反应后催化剂的XRD谱图

    Figure  10  XRD patterns of the spent catalysts after the reaction tests

    图  11  三种铝源催化剂反应后空气气氛下的TG-DTG曲线

    Figure  11  TG-DTG profiles in air atmosphere of the spent catalysts after reaction

    图  12  三种铝源催化剂反应后的TPH谱图

    Figure  12  TPH profiles of the spent catalysts after reaction

    表  1  催化剂还原后和反应后的Ni晶粒粒径

    Table  1  Size of Ni species on the reduced catalysts and the spent catalysts after reaction tests

    Catalyst Ni particle size d/nm Increasing rate /%
    after reduction after reaction
    NiNO-AlNO 18.89 22.56 19
    NiNO-AlSO 46.46 27.15 -42
    NiNO-AlCl 36.69 39.51 8
    下载: 导出CSV

    表  2  催化剂比表面积、孔体积和平均孔径测试结果

    Table  2  Surface area, pore volume, average pore diameter of three catalysts after reduction

    Catalyst ABET/(m2·g-1) v/(m3·g-1) d/nm
    NiNO-AlNO 101.70 0.32 16.54
    NiNO-AlSO 5.05 0.02 11.91
    NiNO-AlCl 159.02 0.32 9.84
    下载: 导出CSV
  • [1] ABDULRASHEE A, JALIL A A, GAMBO Y, IBRAHIM M, HAMBALI H U, SHAHUL HAMID M. A review on catalyst development for dry reforming of methane to syngas:Recent advances[J]. Renewable Sustainable Energy Rev, 2019, 108:175-193. doi: 10.1016/j.rser.2019.03.054
    [2] ZHANG G J, LIU J W, XU Y, SUN Y H. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010-2017)[J]. Int J Hydrogen Energy, 2018, 43:15030-15054. doi: 10.1016/j.ijhydene.2018.06.091
    [3] HORLYCK J, LEWIS S, AMAL R, SCOTT J. The impact of la doping on dry reforming ni-based catalysts loaded on fsp-alumina[J]. Top Catal, 2018, 61:1842-1855. doi: 10.1007/s11244-018-1015-1
    [4] CHEN C J, WANG X G, HUANG H G, ZOU X J, GU F N, SU F B, LU X G. Synthesis of mesoporous Ni-La-Si mixed oxides for CO2 reforming of CH4 with a high H2 selectivity[J]. Fuel Process Technol, 2019, 185:56-57. doi: 10.1016/j.fuproc.2018.11.017
    [5] JANG W J, SHIM J O, KIM H M, YOO S Y, ROH H S. A review on dry reforming of methane in aspect of catalytic properties[J]. Catal Today, 2019, 324:15-26. doi: 10.1016/j.cattod.2018.07.032
    [6] NAVAS A Z, CRUZ P L, MARTIN G M, IRIBARREN D, DUFOUR J. Simulation and life cycle assessment of synthetic fuels produced via biogas dry reforming and Fischer-Tropsch synthesis[J]. Fuel, 2019, 235(1):1492-1500. https://www.sciencedirect.com/science/article/pii/S0016236118315199
    [7] ARAMOUNIL N A K, TOUNMA J G, TARBOUSH B A, ZEAITER J, AHMAD M N. Catalyst design for dry reforming of methane:Analysis review[J]. Renewable Sustainable Energy Rev, 2018, 82:2570-2585. doi: 10.1016/j.rser.2017.09.076
    [8] DAHDAH E, RACHED J A, AOUAD S, GENNEQUIN C, TIDAHY H L, ESTEPHANE J, ABOUKAIS A, AAD E A. CO2 reforming of methane over NixMg6-xAl2 catalysts:Effect of lanthanum doping on catalytic activity and stability[J]. Int J Hydrogen Energy, 2017, 42(17):12808-12817. doi: 10.1016/j.ijhydene.2017.01.197
    [9] MO W L, MA F Y, MA Y Y, FAN X. The optimization of Ni-Al2O3 catalyst with the addition of La2O3 for CO2-CH4 reforming to produce syngas[J]. Int J Hydrogen Energy, 2019, 44(45):24510-24524. doi: 10.1016/j.ijhydene.2019.07.204
    [10] SERRANO L A, DAZA L. Influence of the operating parameters over dry reforming of methane to syngas[J]. Int J Hydrogen Energy, 2014, 39(8):4089-4094. doi: 10.1016/j.ijhydene.2013.05.135
    [11] TALKHONCHEH S K, HAGHIGHI M. Syngas production via dry reforming of methane over Ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina[J]. J Nat Gas Sci Eng, 2015, 23:16-25. doi: 10.1016/j.jngse.2015.01.020
    [12] REZAEI M, ALAVI S M. Dry reforming over mesoporous nanocrystalline 5% Ni/M-MgAl2O4 (M:CeO2, ZrO2, La2O3) catalysts[J]. Int J Hydrogen Energy, 2019, 44(31):16516-16525. doi: 10.1016/j.ijhydene.2019.04.213
    [13] LI B, XU Z X, JING F L, LUO S Z, WANG N, CHU W. Improvement of catalytic stability for CO2 reforming of methane by copper promoted Ni-based catalyst derived from layered-double hydroxides[J]. J Energy Chem, 2016, 25(6):1078-1085. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqhxzz-e201606023
    [14] WANG Y, YAO L, WANG S H, MAO D H, HU C W. Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts:A review[J]. Fuel Process Technol, 2018, 169:199-206. doi: 10.1016/j.fuproc.2017.10.007
    [15] SEO H O. Recent scientific progress on developing supported Ni catalysts for dry (CO2) reforming of methane[J]. Catalysts, 2018, 8(3):110-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000203008
    [16] AMIR E, REZAEI M, MESHKANI F. Investigation of the catalytic performance and coke formation of nanocrystalline Ni/SrO-Al2O3 catalyst in dry reforming of methane[J]. Iran J Hydrogen Fuel Cell, 2016, 3(4):315-322. https://www.researchgate.net/publication/222816867_Improvement_of_coke_resistance_of_NiAl2O3_catalyst_in_CH4CO2_reforming_by_ZrO2_addition
    [17] SHIRAZ M H A, REZAEI M, MESHKANI F. The effect of promoters on the CO2 reforming activity and coke formation of nanocrystalline Ni/Al2O3 catalysts prepared by microemulsion method[J]. Korean J Chem Eng, 2016, 33:3359-3366. doi: 10.1007/s11814-016-0203-6
    [18] SHANG Z Y, LI S G, LI L, LIU G Z, LIANG X H. Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane[J]. Appl Catal B:Environ, 2017, 201:302-309. doi: 10.1016/j.apcatb.2016.08.019
    [19] CHEIN R Y, FUNG W Y. Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts[J]. Int J Hydrogen Energy, 2019, 44:14303-14315. doi: 10.1016/j.ijhydene.2019.01.113
    [20] RYOO H, MA B C, KIM Y C. Syngas production via combined steam and carbon dioxide reforming of methane over Ni-Mo-Sb/Al2O3 catalysts[J]. J Nanosci Nanotechnol, 2019, 19:988-990. doi: 10.1166/jnn.2019.15941
    [21] 覃发玠, 刘雅杰, 庆绍军, 侯晓宁, 高志贤.甲醇制氢铜铝尖晶石缓释催化剂的研究-不同铜源合成的影响[J].燃料化学学报, 2017, 45(12):1481-1488. doi: 10.3969/j.issn.0253-2409.2017.12.010

    QIN Fa-jie, LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, GAO Zhi-xian. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. J Fuel Chem Technol, 2017, 45(12):1481-1488. doi: 10.3969/j.issn.0253-2409.2017.12.010
    [22] 杜明仙, 翟效珍, 李源, 李林东, 朱华青, 谭长瑜.高比表面积窄孔分布氧化铝的制备Ⅰ.沉淀条件的影响[J].催化学报, 2002, 23(5):456-468. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb200205019

    DU Ming-xian, ZHAI Xiao-zhen, LI Yuan, LI Lin-dong, ZHU Hua-qing, TAN Chang-yu. Preparation of alumina with high specific surface area and narrow pore size distributionⅠ. Effect of precipitation conditions[J]. Chin J Catal, 2002, 23(5):456-468. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb200205019
    [23] 谭亚南, 李枫, 伊晓东, 王跃敏, 方维平, 万惠霖.一种制备活性氧化铝的新方法[J].催化学报, 2008, 29(10):975-978. doi: 10.3321/j.issn:0253-9837.2008.10.006

    TAN Ya-nan, LI Feng, YI Xiao-dong, WANG Yue-min, FANG Wei-ping, WAN Hui-lin. A novel method for preparation of activated alumina[J]. Chin J Catal, 2008, 29(10):975-978. doi: 10.3321/j.issn:0253-9837.2008.10.006
    [24] 莫文龙, 马凤云, 刘月娥, 刘景梅, 钟梅, 艾沙·努拉洪.制备方法对Ni-Al2O3催化剂在CO2-CH4重整反应中催化剂的影响[J].燃料化学学报, 2015, 43(9):1084-1091. http://www.ccspublishing.org.cn/article/id/100033402

    MO Wen-long, MA Feng-yun, LIU Yue-e, LIU Jing-mei, ZHONG Mei, AISHA Nu-la-hong. Effect of preparation methods on the catalytic performance of Ni-Al2O3 for CO2-CH4 reforming[J]. J Fuel Chem Technol, 2015, 43(9):1084-1091. http://www.ccspublishing.org.cn/article/id/100033402
    [25] 郝志刚, 朱庆山, 雷泽, 李洪钟.流化床反应器中不同Ni/Al2O3催化剂上CH4-CO2重整反应性能的比较研究[J].燃料化学学报, 2007, 35(4):436-441. doi: 10.3969/j.issn.0253-2409.2007.04.010

    HAO Zhi-gang, ZHU Qing-shan, LEI Ze, LI Hong-zhong. Comparative study of CH4-CO2 reforming over different Ni/Al2O3 catalysts in a fluidized bed reactor[J]. J Fuel Chem Technol, 2007, 35(4):436-441. doi: 10.3969/j.issn.0253-2409.2007.04.010
    [26] VETCHINKINA T N. Physicochemical properties of the alumina produced by alkaline and acidic methods[J]. Russ Metall, 2009, 2:120-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d2d379d4bd9f8055f2fb88feeea831b
    [27] HAO M M, ZENG Z Q, FAN G F, WANG X H, LÜ W Z, LIANG F. Influence of sulfate ion on phase and dispersion of Y3Al5O12 nanopowders with the co-crystallization method[J]. Solid State Phenom, 2018, 281:3-8. doi: 10.4028/www.scientific.net/SSP.281.3
    [28] WANG J, SHI J, XU B. Effect of precursors on the morphology of hydroxyl aluminum prepared by hydrothermal treatment[J]. Adv Mater Res, 2011, 308/310:542-547. doi: 10.4028/www.scientific.net/AMR.308-310.542
    [29] JABBOUR K, MASSIANI P, DAVIDSON A, CASALE S, HASSAN N E. Ordered mesoporous "one-pot" synthesized Ni-Mg (Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM)[J]. Appl Catal B:Environ, 2017, 201:527-542. doi: 10.1016/j.apcatb.2016.08.009
    [30] 张荣俊, 夏国富, 李明丰, 吴玉, 聂红, 李大东.载体类型对Ni基催化剂甲烷干重整反应性能的影响[J].燃料化学学报, 2015, 43(11):1359-1365. doi: 10.3969/j.issn.0253-2409.2015.11.011

    ZHANG Rong-jun, XIA Guo-fu, LI Ming-feng, WU Yu, NIE Hong, LI Da-dong. Effect of support on the performance of Ni-based catalyst in methane dry reforming[J]. J Fuel Chem Technol, 2015, 43(11):1359-1365. doi: 10.3969/j.issn.0253-2409.2015.11.011
    [31] 周建良, 朱健, 陈肇雄, 邱丽玲, 何雪琴, 霍艳.不同原料对镁铝水滑石晶体结构及形貌影响的研究[J].华中师范大学学报(自然科学版), 2010, 44(2):247-250. http://d.old.wanfangdata.com.cn/Periodical/hzsfdxxb201002018

    ZHOU Jian-liang, ZHU Jian, CHEN Zhao-xiong, QIU Li-ling, HE Xue-qin, HUO Yan. Influence of different raw materials on the crystal structure and morphology of Mg-Al-CO3 hydrotalcite[J]. J Huazhong Norm Univ (Nat Sci), 2010, 44(2):247-250. http://d.old.wanfangdata.com.cn/Periodical/hzsfdxxb201002018
    [32] 王晶, 徐冰.铝盐前驱体对水热法制备薄水铝石微观结构的影响[J].中国有色金属学报, 2012, 22(6):1821-1825. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201206037

    WANG Jing, XU Bing. Effect of aluminum salt precursors on microstructure of boehmite prepared by hydrothermal treatment[J]. Chin J Nonferrous Met, 2012, 22(6):1821-1825. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201206037
    [33] 莫文龙, 马凤云, 刘月娥, 刘景梅, 钟梅, 艾沙·努拉洪.溶液燃烧法制备Ni-Al2O3催化剂用于CO2-CH4重整研究[J].无机材料学报, 2016, 31(5):485-491. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201605007

    MO Wen-long, MA Feng-yun, LIU Yue-e, LIU Jing-mei, ZHONG Mei, AISHA Nu-la-hong. Preparation of Ni-Al2O3 Catalysts by Solution Combustion Method for CO2 Reforming of CH4[J]. J Inorg Mater, 2016, 31(5):485-491. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201605007
    [34] AL-FATESH A S, NAEEM M A, FAKEEHA A H, ABASAEED A E. Role of La2O3 as promoter and support in Ni/γ-Al2O3 catalysts for dry reforming of methane[J]. Chin J Chem Eng, 2014, 22(1):28-37. doi: 10.1016/S1004-9541(14)60029-X
    [35] 张鹏, 张晴, 刘静, 高濂.甲烷干气重整镍基复合结构催化剂的研究进展[J].无机材料学报, 2018, 33(9):931-941. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201809002

    ZHANG Peng, ZHANG Qing, LIU Jing, GAO Lian. Research progress of ni-based composite catalysts for methane dry reforming[J]. J Inorg Mater, 2018, 33(9):931-941. http://d.old.wanfangdata.com.cn/Periodical/wjclxb201809002
    [36] 莫文龙, 马风云, 刘景梅, 钟梅, 艾沙·努拉洪.基于程序升温氢化表征的Ni-Al2O3催化剂上CO2-CH4重整反应积碳研究[J].燃料化学学报, 2019, 47(5):549-557. doi: 10.3969/j.issn.0253-2409.2019.05.005

    MO Wen-long, MA Feng-yun, LIU Jing-mei, ZHONG Mei, AISHA Nu-la-hong. A study on the carbonaceous deposition on Ni-Al2O3 catalyst in CO2-CH4 reforming on the basis of temperature programmed hydrogenation characterization[J]. J Fuel Chem Technol, 2019, 47(5):549-557. doi: 10.3969/j.issn.0253-2409.2019.05.005
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  34
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 修回日期:  2020-02-14
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回