留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲醇水蒸气重整制氢CuO/CeO2-ZrO2/SiC整体催化剂的研究

焦桐 许雪莲 张磊 翁幼云 翁玉冰 高志贤

焦桐, 许雪莲, 张磊, 翁幼云, 翁玉冰, 高志贤. 甲醇水蒸气重整制氢CuO/CeO2-ZrO2/SiC整体催化剂的研究[J]. 燃料化学学报(中英文), 2020, 48(9): 1122-1130.
引用本文: 焦桐, 许雪莲, 张磊, 翁幼云, 翁玉冰, 高志贤. 甲醇水蒸气重整制氢CuO/CeO2-ZrO2/SiC整体催化剂的研究[J]. 燃料化学学报(中英文), 2020, 48(9): 1122-1130.
JIAO Tong, XU Xue-lian, ZHANG Lei, WENG You-yun, WENG Yu-bing, GAO Zhi-xian. Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1122-1130.
Citation: JIAO Tong, XU Xue-lian, ZHANG Lei, WENG You-yun, WENG Yu-bing, GAO Zhi-xian. Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1122-1130.

甲醇水蒸气重整制氢CuO/CeO2-ZrO2/SiC整体催化剂的研究

基金项目: 

国家自然科学基金 21673270

详细信息
  • 中图分类号: O643

Research on CuO/CeO2-ZrO2/SiC monolithic catalysts for hydrogen production from steam reforming of methanol

Funds: 

the National Natural Science Foundation of China 21673270

More Information
  • 摘要: 采用浸渍法和溶胶凝胶法制备了CuO/CeO2-ZrO2/SiC整体催化剂,并将其用于甲醇水蒸气重整制氢反应中。结果表明,与CuO/CeO2-ZrO2颗粒催化剂相比,CuO/CeO2-ZrO2/SiC整体催化剂催化活性较好,产氢速率较快且重整气中CO体积分数较低。进一步探究了涂层涂覆量和CuO负载量对催化性能的影响,结果表明,当CeO2-ZrO2复合氧化物涂层涂覆量在15%±1%,CuO负载量为5%±1%时,催化性能较好;当反应温度为340℃,水醇物质的量比为1.2,甲醇水蒸气气体空速为4840 h-1时,甲醇转化率为86.0%,产氢速率为1490.0 L/(m3·s),重整气中CO体积分数为1.55%。最后通过单因素实验法探究了甲醇水蒸气气体空速、水醇物质的量比和反应温度对反应的影响。结果表明,随着气体空速变大,甲醇转化率下降,产氢速率上升,重整气中CO体积分数下降。随着水醇物质的量比增加,甲醇转化率先上升后下降,产氢速率先上升后下降,重整气中CO体积分数下降。随着反应温度的升高,甲醇转化率、产氢速率和重整气中CO体积分数均上升。
  • 图  1  CZS催化剂载体的SEM照片

    Figure  1  SEM images of CZS catalytic support

    图  2  CuO/CZS整体催化剂的SEM照片

    Figure  2  SEM images of CuO/CZS monolithic catalysts

    图  3  不同CeO2-ZrO2涂覆量对催化活性的影响

    Figure  3  Effect of different CeO2-ZrO2 coating on catalytic activity

    A: CuO/CZS-A; B: CuO/CZS-B; C: CuO/CZS-C reaction condition: W/M=1.2, GHSV=4840 h-1, t=340 ℃

    图  4  不同CuO负载量对催化活性的影响

    Figure  4  Effect of different CuO loating on catalytic activity

    a: 2 CuO/CZS-B; b: 5 CuO/CZS-B; c: 10 CuO/CZS-B; d: 20 CuO/CZS-B reaction condition: W/M=1.2, GHSV=4840 h-1, t=340 ℃

    图  5  CuO/CZS-B整体催化剂的SEM照片

    Figure  5  SEM images of CuO/CZS monolithic catalysts

    图  6  甲醇转化率和产氢速率随水醇物质的量比的变化

    Figure  6  Diagram of methanol conversion and hydrogen production rate changed with water methanol molar ratio reaction condition: t=300 ℃

    图  7  CO体积分数随水醇物质的量比的变化

    Figure  7  Diagram of CO volume fraction changed with water methanol molar ratio reaction condition: t=300 ℃

    图  8  甲醇转化率和产氢速率随甲醇水蒸气气体空速的变化

    Figure  8  Diagram of methanol conversion and hydrogen production rate changed with methanol water gas hourly space velocity reaction condition: t=300 ℃

    图  9  CO体积分数随甲醇水蒸气气体空速的变化

    Figure  9  Diagram of CO volume fraction changed with methanol water gas hourly space velocity reaction condition: t=300 ℃

    图  10  甲醇转化率和产氢速率图随温度的变化

    Figure  10  Diagram of methanol conversion and hydrogen production rate changed with temperature reaction condition: W/M=1.2; GHSV=4840 h-1

    图  11  CO体积分数随温度的变化

    Figure  11  Diagram of CO volume fraction changed with temperature reaction condition: W/M=1.2; GHSV=4840 h-1

    图  12  甲醇转化率随反应时间的变化

    Figure  12  Diagram of methanol conversion changed with time reaction condition: W/M=1.2; GHSV=4840 h-1; t=300 ℃

    表  1  催化剂的甲醇转化率、CO体积分数和产氢速率

    Table  1  Methanol conversion, CO volume fraction and hydrogen production rate of catalysts

    Catalyst Methanol conversiona /% CO volume fractiona /% H2 production ratea /(L·m-3·s-1)
    10 CuO/CZ 76.3 2.76 1302.1
    10 CuO/CZS 79.9 1.85 1395.0
    a: reaction condition: t=340 ℃, W/M=1.2:1, GHSV=4840 h-1
    下载: 导出CSV

    表  2  CZS催化载体涂层涂覆质量分数

    Table  2  Mass coating percentage of CZS catalytic support

    Catalytic support Times CZS-A CZS-B CZS-C
    Coating amount w/% 1 7.33 7.31 7.34
    2 - 7.32 7.30
    3 - - 7.30
    total 7.33 14.63 21.94
    下载: 导出CSV
  • [1] HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017, 42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229
    [2] MEI D, FENG Y, QIAN M, CHEN Z Q. An innovative micro-channel catalyst support with a micro-porous surface for hydrogen production via methanol steam reforming[J]. Int J Hydrogen Energy, 2016, 41(4):2268-2277. doi: 10.1016/j.ijhydene.2015.12.044
    [3] MA Y F, GUAN G Q, PHANTHONG P, LI X M, GAO J, HAO X G, WANG Z D, ABUDULA A. Steam reforming of methanol for hydrogen production over nanostructured wire-like molybdenum carbide catalyst[J]. Int J Hydrogen Energy, 2014, 39(33):18803-18811. doi: 10.1016/j.ijhydene.2014.09.062
    [4] 刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺.载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].燃料化学学报, 2018, 46(8):992-999. http://www.ccspublishing.org.cn/article/id/a6e5d5bf-0e5d-4327-b0f9-f6cde8e4ef32

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(8):992-999. http://www.ccspublishing.org.cn/article/id/a6e5d5bf-0e5d-4327-b0f9-f6cde8e4ef32
    [5] 王东哲, 冯旭, 张健, 陈琳, 张磊, 王宏浩, 白金, 张财顺, 张政一.助剂M(M=Cr, Zn, Y, La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].燃料化学学报, 2019, 47(10):1251-1257. http://www.ccspublishing.org.cn/article/id/fc3872f1-7c21-4624-8959-0eb51860b79b

    WANG Dong-zhe, FENG Xu, ZHANG Jian, CHEN Lin, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Cai-shun, ZHANG Zheng-yi. Effect of promoter M (M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. J Fuel Chem and Technol, 2019, 47(10):1251-1257. http://www.ccspublishing.org.cn/article/id/fc3872f1-7c21-4624-8959-0eb51860b79b
    [6] YANG S Q, ZHOU F, LIU Y J, ZHANG L, CHEN Y, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 44(14):7252-7261. doi: 10.1016/j.ijhydene.2019.01.254
    [7] JIANG C J, TRIMM D L, WAINWRIGHT M S. Kinetic study of steam reforming of methanol over copper-based catalysts[J]. Appl Catal A:Gen, 1993, 93(2):245-255. doi: 10.1016/0926-860X(93)85197-W
    [8] JIANG C J, TRIMM D L, WAINWRIGHT M S. Kinetic mechanism for the reaction between methanol and water over a Cu/ZnO/Al2O3 catalyst[J]. Appl Catal A:Gen, 1993, 97(2):145-158. doi: 10.1016/0926-860X(93)80081-Z
    [9] AMPHLETT J C, CREBER K A M, DAVIS J M, MANN R F, PEPPLEY B A, STOKES D M. Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells[J]. Int J Hydrogen Energy, 1994, 19(2):131-137. doi: 10.1016/0360-3199(94)90117-1
    [10] LIU N, YUAN Z S, WANG S D, ZHANG C X, WANG S J, LI D Y. Characterization and performance of a ZnO-ZnCr2O4/CeO2-ZrO2 monolithic catalyst for methanol auto-thermal reforming process[J]. Int J Hydrogen Energy, 2008, 33(6):1643-1651. doi: 10.1016/j.ijhydene.2007.12.058
    [11] DANWITTAYAKUL S, DUTTA J. Zinc oxide nanorods based catalysts for hydrogen production by steam reforming of methanol[J]. Int J Hydrogen Energy, 2012, 37(7):5518-5526. doi: 10.1016/j.ijhydene.2011.12.161
    [12] TAHAY P, KHANI Y, JABARI M, BAHADORAN F, SAFARI N. Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation[J]. Appl Catal A:Gen, 2018, 554:44-53. doi: 10.1016/j.apcata.2018.01.022
    [13] FASANYA O O, AL-HAJRI R, AHMED O U, MYINT M T Z, ATTA A Y, JIBRIL B Y, DUTTA J. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 44(41):22936-22946. doi: 10.1016/j.ijhydene.2019.06.185
    [14] KHANI Y, BAHADORAN F, SAFARI N, SOLTANALI S, TAHERI S A. Hydrogen production from steam reforming of methanol over Cu-based catalysts:The behavior of ZnxLaxAl1-xO4 and ZnO/La2O3/Al2O3 lined on cordierite monolith reactors[J]. Int J Hydrogen Energy, 2019, 44(23):11824-11837. doi: 10.1016/j.ijhydene.2019.03.031
    [15] VERLATO E, BARISON S, CIMINO S, DERGAL F, LISI L, MANCINO G, MUSIANI M, VAZQUEZ-GOMEZ L. Catalytic partial oxidation of methane over nanosized Rh supported on Fecralloy foams[J]. Int J Hydrogen Energy, 2014, 39(22):11473-11485. doi: 10.1016/j.ijhydene.2014.05.076
    [16] BENITO P, NUYTS G, MONTI M, NOLF W D, FORNASARI G, JANSSENS K, SCAVETTA E, VACCARI A. Stable Rh particles in hydrotalcite-derived catalysts coated on FeCrAlloy foams by electrosynthesis[J]. Appl Catal B:Environ, 2015, 179:321-332. doi: 10.1016/j.apcatb.2015.05.035
    [17] AVILA P, MONTES M, MIRO E E. Monolithic reactors for environmental applications:A review on preparation technologies[J]. Chem Eng J, 2005, 109(1/3):11-36. http://www.sciencedirect.com/science/article/pii/S1385894705000793
    [18] PALMA V, MARTINO M, MELONI E, RICCA A. Novel structured catalysts configuration for intensification of steam reforming of methane[J]. Int J Hydrogen Energy, 2017, 42(3):1629-1638. doi: 10.1016/j.ijhydene.2016.06.162
    [19] LOPEZ E, DIVINS N J, ANZOLA A, SCHBIB S, BORIO D, LLORCA J. Ethanol steam reforming for hydrogen generation over structured catalysts[J]. Int J Hydrogen Energy, 2013, 38(11):4418-4428. doi: 10.1016/j.ijhydene.2013.01.174
    [20] 刘娜, 袁中山, 张纯希, 王淑娟, 李德意, 王树东. Zn-Cr整体催化剂中Ce-Zr溶胶涂层的制备、表征及对甲醇自热重整反应的影响[J].催化学报, 2005, 26(12):1078-1082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb200512009

    LIU Na, YUAN Zhong-shan, ZHANG Chun-xi, WANG Shu-juan, LI De-yi, WANG Shu-dong. Preparation, characterization and effect of Ce-Zr washcoat on Zn-Cr monolithic catalysts for methanol autothermal reforming[J]. Chin J Catal, 2005, 26(12):1078-1082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb200512009
    [21] 刘娜, 王树东, 袁中山, 张纯希, 王淑娟, 李德意, 付桂芝.甲醇自热重整制氢整体催化剂的制备[J].化工学报, 2004, 55(S1):90-94. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ2004S1017.htm

    LIU Na, WANG Shu-dong, YUAN Zhong-shan, ZHANG Chun-xi, WANG Shu-juan, LI De-yi, FU Gui-zhi. Methanol autothermal reforming for hydrogen generation over monolithic catalyst[J]. CIESC J, 2004, 55(S1):90-94. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ2004S1017.htm
    [22] LIU H T, LI S Q, ZHANG S B, WANG J M, ZHOU G J, CHEN L, WANG X L. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catal Commun, 2008, 9(1):51-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=313383b0d20bcb75449aa2eba45e0456
    [23] CUI X T, KAER S K. Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming[J]. Int J Hydrogen Energy, 2018, 43(27):11952-11968. doi: 10.1016/j.ijhydene.2018.04.142
    [24] GOU Y Z, WANG H, JIAN K, SHAO C W, WANG X Z. Preparation and characterization of SiC fibers with diverse electrical resistivity through pyrolysis under reactive atmospheres[J]. J Eur Ceram Soc, 2017, 37(2):517-522. doi: 10.1016/j.jeurceramsoc.2016.09.023
    [25] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
    [26] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭.稀土掺杂改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(2):179-188. http://www.ccspublishing.org.cn/article/id/00984ce6-5d53-4ea0-929f-0c4b80514203

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(2):179-188. http://www.ccspublishing.org.cn/article/id/00984ce6-5d53-4ea0-929f-0c4b80514203
    [27] ZHANG X, SHI P. Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts[J]. J Mol Catal A:Chem, 2003, 194(1/2):99-105. http://www.sciencedirect.com/science/article/pii/S1381116902004648
    [28] ZHANG X R, SHI P, ZHAO J X, ZHAO M Y, LIU C T. Production of hydrogen for fuel cells by steam reforming of methanol on Cu/ZrO2/Al2O3 catalysts[J]. Fuel Process Technol, 2003, 83(1/3):183-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a32b3ad82d84942b2068be5b564bb769
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  123
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-11
  • 修回日期:  2020-09-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-09-10

目录

    /

    返回文章
    返回