留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱土金属掺杂对钴基尖晶石复合金属氧化物催化分解N2O性能的影响

李思漩 夏蕾 李靖宇 刘晓刚 孙巾茹 王虹 迟姚玲 李翠清 宋永吉

李思漩, 夏蕾, 李靖宇, 刘晓刚, 孙巾茹, 王虹, 迟姚玲, 李翠清, 宋永吉. 碱土金属掺杂对钴基尖晶石复合金属氧化物催化分解N2O性能的影响[J]. 燃料化学学报(中英文), 2018, 46(11): 1377-1385.
引用本文: 李思漩, 夏蕾, 李靖宇, 刘晓刚, 孙巾茹, 王虹, 迟姚玲, 李翠清, 宋永吉. 碱土金属掺杂对钴基尖晶石复合金属氧化物催化分解N2O性能的影响[J]. 燃料化学学报(中英文), 2018, 46(11): 1377-1385.
LI Si-xuan, XIA Lei, LI Jing-yu, LIU Xiao-gang, SUN Jin-ru, WANG Hong, CHI Yao-ling, LI Cui-qing, SONG Yong-ji. Effect of alkaline earth metal doping on the catalytic performance of cobalt-based spinel composite metal oxides in N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1377-1385.
Citation: LI Si-xuan, XIA Lei, LI Jing-yu, LIU Xiao-gang, SUN Jin-ru, WANG Hong, CHI Yao-ling, LI Cui-qing, SONG Yong-ji. Effect of alkaline earth metal doping on the catalytic performance of cobalt-based spinel composite metal oxides in N2O decomposition[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1377-1385.

碱土金属掺杂对钴基尖晶石复合金属氧化物催化分解N2O性能的影响

基金项目: 

国家自然科学基金 21343009

国家自然科学基金 U1662103

国家自然科学基金 2167329

燃料清洁化及高效催化减排技术北京市重点实验室 BZ041420180007

北京市大学生创新创业训练计划 2018J00035

详细信息

Effect of alkaline earth metal doping on the catalytic performance of cobalt-based spinel composite metal oxides in N2O decomposition

Funds: 

the National Natural Science Foundation of China 21343009

the National Natural Science Foundation of China U1662103

the National Natural Science Foundation of China 2167329

the Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology BZ041420180007

the Beijing College Students Innovation and Entrepreneurship Training Program 2018J00035

  • 摘要: 采用共沉淀法制备碱土金属掺杂的钴基尖晶石型复合金属氧化物MxCo3-xO4M=Mg、Ca、Sr、Ba;x=0、0.1、0.3、0.5、0.7、0.9)催化剂,使用XRD、SEM、氮吸附、H2-TPR、O2-TPD-MS和XPS等技术对催化剂进行表征,并在固定床微型反应器中评价了MxCo3-xO4催化剂催化分解N2O的活性,研究了碱土金属掺杂对其催化性能的影响。结果表明,碱土金属掺杂后,MxCo3-xO4催化剂颗粒粒径减小,比表面积增大,表面吸附氧和Co2+数量增加,氧化还原性能增强;在反应气组成为0.68% N2O,3% O2,Ar为平衡气的条件下,碱土金属锶掺杂、掺杂量x为0.7时,Sr0.7Co2.3O4的N2O分解催化活性最高,N2O转化率为10%和95%时所需的温度分别为312和451℃。
    1)  本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • 图  1  MxCo3-xO4催化剂的XRD谱图

    Figure  1  XRD patterns of MxCo3-xO4 catalysts

    a: Co3O4; b: Mg0.5Co2.5O4; c: Ca0.5Co2.5O4; d1: Sr0.1Co2.9O4; d2: Sr0.3Co2.7O4; d3: Sr0.5Co2.5O4; d4: Sr0.7Co2.3O4; d5: Sr0.9Co2.1O4; e: Ba0.5Co2.5O4

    图  2  MxCo3-xO4催化剂SEM照片

    Figure  2  SEM images of MxCo3-xO4 catalysts

    (a): Co3O4; (b): Mg0.5Co2.5O4; (c): Ca0.5Co2.5O4; (d)1: Sr0.1Co2.9O4; (d)2: Sr0.3Co2.7O4; (d3): Sr0.5Co2.5O4; (d4): Sr0.7Co2.3O4; (d5): Sr0.9Co2.1O4; (e): Ba0.5Co2.5O4

    图  3  MxCo3-xO4催化剂的O2-TPD-MS谱图

    Figure  3  O2-TPD-MS profiles of MxCo3-xO4 catalysts

    a: Co3O4; b: Mg0.5Co2.5O4; c: Ca0.5Co2.5O4; d: Ba0.5Co2.5O4; e: Sr0.1Co2.9O4; f: Sr0.3Co2.7O4; g: Sr0.5Co2.5O4; h: Sr0.7Co2.3O4; i: Sr0.9Co2.1O4

    图  4  MxCo3-xO4催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of MxCo3-xO4 catalysts

    a: Co3O4; b: Mg0.5Co2.5O4; c: Ca0.5Co2.5O4; d1: Sr0.1Co2.9O4; d2: Sr0.3Co2.7O4; d3: Sr0.5Co2.5O4; d4: Sr0.7Co2.3O4; d5: Sr0.9Co2.1O4; e: Ba0.5Co2.5O4

    图  5  MxCo3-xO4催化剂Co 2p(a)和O 1s(b)的XPS谱图

    Figure  5  XPS spectra of Co 2p(a)和O 1s (b) of MxCo3-xO4 catalysts

    a: Co3O4; b: Ba0.5Co2.5O4; c: Sr0.1Co2.9O4; d: Sr0.3Co2.7O4; e: Sr0.5Co2.5O4; f: Sr0.7Co2.3O4; g: Sr0.9Co2.1O4

    图  6  MxCo3-xO4催化剂催化分解N2O活性评价

    Figure  6  Activity of various MxCo3-xO4 catalysts in N2O decomposition

    表  1  MxCo3-xO4催化剂物性和O2-TPD-MS表征

    Table  1  Properties and the O2-TPD-MS results of MxCo3-xO4 catalysts

    Sample dXRD/nm dSEM/nm ABET/
    (m2·g-1)
    Oxygen desorption capacity /(mg·g-1)
    surface oxygen lattice oxygen
    Co3O4 36.1 200-400 6.4 0.5 68.0
    Mg0.5Co2.5O4 35.4 70-300 10.4 1.0 68.1
    Ca0.5Co2.5O4 33.9 50-200 10. 8 1.4 68.4
    Sr0.5Co2.5O4 29.4 30-200 12.8 1.8 68.3
    Ba0.5Co2.5O4 32.6 30-300 12.0 1.5 68.0
    Sr0.1Co2.9O4 32.1 70-200 6.8 1.1 70.5
    Sr0.3Co2.7O4 26.8 30-180 13.3 1.7 67.9
    Sr0.7Co2.3O4 25.3 30-150 13.7 2.1 71.8
    Sr0.9Co2.1O4 24.8 30-100 16.7 1.7 72.0
    下载: 导出CSV

    表  2  催化剂MxCo3-xO4的XPS数据

    Table  2  XPS results of the MxCo3-xO4 catalysts

    Catalysts Binding energies of Co 2p E/eV ΔE n(Co2+)/n(Co3+) Binding energies of O 1s E/eV n(Oads)/
    n(Osum)
    Co 2p3/2 Co 2p1/2 OLat Oads OOH
    Co3O4 779.7 794.7 15.0 0.49 529.8 531.4 533.4 0.31
    Ba0.5Co2.5O4 779.4 794.5 15.1 0.55 529.5 531.7 533.3 0.35
    Sr0.1Co2.9O4 779.7 794.7 15.0 0.52 529.7 530.9 532.8 0.33
    Sr0.3Co2.7O4 779.8 794.7 15.1 0.53 529.7 531.0 532.8 0.34
    Sr0.5Co2.5O4 779.7 794.7 15.0 0.59 529.7 530.9 532.8 0.36
    Sr0.7Co2.3O4 779.7 797.7 15.0 0.67 529.6 530.9 532.8 0.37
    Sr0.9Co2.1O4 779.6 784.7 14.9 0.58 529.7 531.0 532.8 0.35
    下载: 导出CSV
  • [1] WANG A Y, WANG Y L, WALTER E D, KUKKADAPU R K, GUO Y L, LU G Z, WEBER R S, WANG Y, PEDEN C H F, GAO F. Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts[J]. J Catal, 2018, 358:199-210. doi: 10.1016/j.jcat.2017.12.011
    [2] 徐向阳, 谷成, 王虹, 张远远, 柯琰, 张成乐, 王明锦, 宋宝华, 李翠清. Co/Hβ催化剂上N2O的分解性能研究[J].燃料化学学报, 2014, 42(7):877-883. http://www.ccspublishing.org.cn/article/id/100033173

    XU Xiang-yang, GU Cheng, WANG Hong, ZHANG Yuan-yuan, KE Yan, ZHANG Cheng-le, WANG Ming-jin, SONG Bao-hua, LI Cui-qing. Catalytic performance of Co/Hβ in N2O decomposition[J]. J Fuel Chem Technol, 2014, 42(7):877-883. http://www.ccspublishing.org.cn/article/id/100033173
    [3] 王虹, 王军利, 李翠清, 宋永吉, 迟姚玲, 王焘. ACo2O4/HZSM-5催化剂上N2O的直接分解[J].物理化学学报, 2010, 26(10):2739-2744. doi: 10.3866/PKU.WHXB20100928

    WANG Hong, WANG Jun-li, LI Cui-qing, SONG Yong-ji, CHI Yao-ling, WANG Tao. Decomposition of N2O on ACo2O4/HZSM-5 Catalysts[J]. Acta Phys Chim Sin, 2010, 26(10):2739-2744. doi: 10.3866/PKU.WHXB20100928
    [4] LIU Z M, HE F, MA L L, PENG S. Recent advances in catalytic decomposition of N2O on noble metal and metal oxide catalysts[J]. Catal Surv Asia, 2016, 20(3):1-12. doi: 10.1007/s10563-016-9213-y
    [5] KONSOLAKIS M. Recent advances on nitrous oxide (N2O) decomposition over non-noble metal oxide catalysts:Catalytic performance, mechanistic considerations and surface chemistry aspects[J]. Acs Catal, 2015, 5:6397-6421. doi: 10.1021/acscatal.5b01605
    [6] YAKOVLEV A L, ZHIDOMIROV G M, VAN SANTEN R A V. N2O decomposition catalyzed by transition metal ions[J]. Catal Lett, 2001, 75:45-48. doi: 10.1023/A:1016692419859
    [7] FELLAH M F, ONAL I. N2O decomposition on Fe-and Co-ZSM-5:A density functional study[J]. Catal Today, 2008, 137:410-417. doi: 10.1016/j.cattod.2007.10.114
    [8] RYDER J A, CHAKRABORTY A K, BELL A T. Density functional theory study of nitrous oxide decomposition over Fe-and Co-ZSM-5[J]. J Phys Chem B, 2002, 106:7059-7064. doi: 10.1021/jp014705e
    [9] SUI C, ZHANG T R, DONG Y L, YUAN F L, NIU X Y, ZHU Y J. Interaction between Ru and Co3O4 for promoted catalytic decomposition of N2O over the Rux-Co3O4 catalysts[J]. Mol Catal, 2017, 435:174-181. doi: 10.1016/j.mcat.2017.03.033
    [10] CHENG H K, HUANG Y Q, WANG A Q, LI L, WANG X D, ZHANG T. N2O decomposition over K-promoted Co-Al catalysts prepared from hydrotalcite-like precursors[J]. Appl Catal B:Environ, 2009, 89(3):391-397. http://d.old.wanfangdata.com.cn/Periodical/hxwlxb201402016
    [11] WANG Y Z, HU X B, ZHENG K, ZHANG H X, ZHAO Y X. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. React Kinet Mech Catal, 2018, 123(2):707-721. doi: 10.1007/s11144-017-1293-9
    [12] IVANOVA Y A, SUTORMINA E F, ISUPOVA I A, VOVK E I. Catalytic activity of the oxide catalysts based on Ni0.75Co2.25O4 modified with cesium cations in a reaction of N2O decomposition[J]. Kinet Catal, 2017, 58(6):793-799. doi: 10.1134/S002315841705007X
    [13] WANG Y Z, HU X B, ZHENG K, WEI X H, ZHAO Y X. Effect of SnO2 on the structure and catalytic performance of Co3O4 for N2O decomposition[J]. Catal Commun, 2018, 111:70-74. doi: 10.1016/j.catcom.2018.04.004
    [14] LIU N, CHEN P, LI Y X, ZHANG R D. N2O Direct dissociation over MgxCeyCo1-x-yCo2O4 composite spinel metal oxide[J]. Catalysts, 2017, 7(1):1-12.
    [15] WANG Y Z, HU X B, ZHENG K, ZHANG H X, ZHAO Y X. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. React Kinet Mech Catal, 2018, 123(2):707-721. doi: 10.1007/s11144-017-1293-9
    [16] DUAN Y K, ZHANG Q L, SONG Z X, WANG J, TANG X S, LIU Q X, ZANG T F. Effect of preparation methods on the catalytic activity of Co3O4 for the decomposition of N2O[J]. Res Chem Intermed, 2017, 43(12):7241-7255. doi: 10.1007/s11164-017-3071-8
    [17] CIURA K, GRZYBEK G, WOJCIK S, INDYK P, KOTARBA A, SOJKA Z. Optimization of cesium and potassium promoterloading in alkali-doped Zn0.4Co2.6O4 vertical bar Al2O3 catalysts for N2O abatement[J]. React Kinet Mech Catal, 2017, 121(2):645-655. doi: 10.1007/s11144-017-1188-9
    [18] DOU Z, ZHANG H, PAN Y, XU X F. Catalytic decomposition of NO over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014, 42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5
    [19] ZHU Z Z, LU G Z, ZHANG Z G, GUO Y, GUO Y L, WANG Y Q. Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation:Effect of the preparation method[J]. Acs Catal, 2013, 3(3):1154-1164. doi: 10.1021/cs400068v
    [20] ABDALLAH H M I, MOYO T. Structural and magnetic studies of (Mg, Sr)0.2Mn0.1Co0.7Fe2O4 nanoferrites[J]. J Alloy Compd, 2013, 562(11):156-163. http://www.sciencedirect.com/science/article/pii/S0925838813003551
    [21] LOGANATHAN A, KUMAR K. Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures[J]. Appl Nanosci, 2016, 6(5):629-639. doi: 10.1007/s13204-015-0480-0
    [22] 刘畅, 薛莉, 贺泓.碱土金属对钴铈复合氧化物催化剂催化N2O分解的影响[J].物理化学学报, 2009, 25(6):1033-1039. doi: 10.3866/PKU.WHXB20090604

    LIU Chang, XUE Li, HE Hong. Influence of alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition[J]. Acta Phys Chim Sin, 2009, 25(6):1033-1039. doi: 10.3866/PKU.WHXB20090604
    [23] ZHANG Q L, TANG X S, NING P, DUAN Y K, SONG Z X, SHI Y Z. Enhancement of N2O catalytic decomposition over Ca modified Co3O4 catalyst[J]. Rsc Adv, 2015, 5(63):51263-51270. doi: 10.1039/C5RA04062K
    [24] 郑丽, 吴藏藏, 徐秀峰. N2O在Mg-Co和Mg-Mn-Co复合氧化物上的催化分解[J].燃料化学学报, 2016, 44(12):1494-1501. doi: 10.3969/j.issn.0253-2409.2016.12.013

    ZHEN Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. J Fuel Chem Technol, 2016, 44(12):1494-1501. doi: 10.3969/j.issn.0253-2409.2016.12.013
    [25] YU H B, WANG X P. Apparent activation energies and reaction rates of N2O decomposition via different routes over Co3O4[J]. Catal Commun, 2017, 106:40-43. https://www.sciencedirect.com/science/article/pii/S1566736717304764
    [26] KIM M J, LEE S J, RYU I S, JEON M W, MOON S H, ROH H S, JEON S G. Catalytic decomposition of N2O over cobalt based spinel oxides:The role of additives[J]. Mol Catal, 2017, 442:202-207. doi: 10.1016/j.mcat.2017.05.029
    [27] IVANOVA Y A, SUTORMINA E F, ISUPOVA I A, VONK E I. Catalytic activity of the oxide catalysts based on Ni0.75Co2.25O4 modified with cesium cations in a reaction of N2O decomposition[J]. Kinet Catal, 2017, 58(6):793-799. doi: 10.1134/S002315841705007X
    [28] QU Z P, GAO K, FU Q, QIN Y. Low-temperature catalytic oxidation of toluene over nanocrystal-like Mn-Co oxides prepared by two-step hydrothermal method[J]. Catal Commun, 2014, 52:31-35. doi: 10.1016/j.catcom.2014.03.035
    [29] BIN F, SONG C L, LÜ G, SONG J O, CAO X F, PANG H T, WANG K P. Structural characterization and selective catalytic reduction of nitrogen oxides with ammonia:A comparison between Co/ZSM-5 and Co/SBA-15[J]. J Phys Chem C, 2012, 116:26262-26274. doi: 10.1021/jp303830x
    [30] XIE P F, LUO Y J, MAQ Z, WANG L Y, HUANG C Y, YUE Y H, HUA W M, GAO Z. CoZSM-11 catalysts for N2O decomposition:Effect of preparation methods and nature of active sites[J]. Appl Catal B:Environ, 2015, 170:34-42. http://www.sciencedirect.com/science/article/pii/S0926337315000326
    [31] 武海鹏, 冯鸣, 徐秀峰. K改性Ni-Co-Al三元复合氧化物催化分解N2O[J].燃料化学学报, 2012, 40(7):872-877. doi: 10.3969/j.issn.0253-2409.2012.07.017

    WU Hai-peng, FENG Ming, XU Xiu-feng. Catalytic decomposition of N2O over potassium promoted Ni-Co-Al ternary mixed oxides[J]. J Fuel Chem Technol, 2012, 40(7):872-877. doi: 10.3969/j.issn.0253-2409.2012.07.017
    [32] 吴藏藏, 张海杰, 王建, 徐秀峰. N2O分解催化剂Co-Al尖晶石型复合氧化物制备参数的优化[J].分子催化, 2016, 30(1):62-71. http://d.old.wanfangdata.com.cn/Periodical/fzch201601008

    WU Cang-cang, ZHANG Hai-jie, WANG Jian, XU Xiu-feng. The preparation parameters screening of Co-Al spinel oxides for N2O catalytic decomposition[J]. J Mol Catal (China), 2016, 30(1):62-71. http://d.old.wanfangdata.com.cn/Periodical/fzch201601008
    [33] LI X, YANG Z C, QI W, LI Y T, WU Y, ZHOUu S X, HUANG S, WEI J, LI H J, YAO P. Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance[J]. Appl Surf Sci, 2016, 363:381-388. doi: 10.1016/j.apsusc.2015.12.039
    [34] LÜ L, SU Y G, LIU X Q, ZHENG H Y, WANG X J. Synthesis of cellular-like Co3O4 nanocrystals with controlled structural, electronic and catalytic properties[J]. J Alloy Compd, 2013, 553:163-166. doi: 10.1016/j.jallcom.2012.10.164
    [35] WU Z X, DENG J G, LIU Y X, XIE S H, JIANG Y, ZHAO X T, YANG J, ARANDIYA NRABDIYAN H, GUO G S, DAI H X. Three-dimensionally ordered mesoporous Co3O4-supported Au-Pd alloy nanoparticles:High-performance catalysts for methane combustion[J]. J Catal, 2015, 332:13-24. doi: 10.1016/j.jcat.2015.09.008
    [36] YAN Z X, XU Z H, CHENG B, JIANG C J. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature[J]. Appl Surf Sci, 2017, 404:426-434. doi: 10.1016/j.apsusc.2017.02.010
    [37] WANG Z, WANG W Z, ZHANG L, JIANG D. Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature[J]. Catal Sci Technol, 2016, 6(11):3845-3853. doi: 10.1039/C5CY01709B
    [38] YU H B, WANG X P, WU X X, CHEN, Y. Promotion of Ag for Co3O4 catalyzing N2O decomposition under simulated real reaction conditions[J]. Chem Eng J, 2018, 334:800-806. doi: 10.1016/j.cej.2017.10.079
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  41
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-16
  • 修回日期:  2018-08-23
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-11-10

目录

    /

    返回文章
    返回