留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance evaluation of nickel as anode catalyst for DMFC in acidic and alkaline medium

Sunitha. M Durgadevi. N Asha Sathish Ramachandran. T

Sunitha. M, Durgadevi. N, Asha Sathish, Ramachandran. T. Performance evaluation of nickel as anode catalyst for DMFC in acidic and alkaline medium[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 592-599.
Citation: Sunitha. M, Durgadevi. N, Asha Sathish, Ramachandran. T. Performance evaluation of nickel as anode catalyst for DMFC in acidic and alkaline medium[J]. Journal of Fuel Chemistry and Technology, 2018, 46(5): 592-599.

详细信息
  • 中图分类号: O643.3

Performance evaluation of nickel as anode catalyst for DMFC in acidic and alkaline medium

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1  (a) cyclic voltammogram of bare nickel mesh electrode in acidic medium without methanol; (b)SEM micrographs of the Ni coated Ni mesh for 10 min by galvanostatic method; (c)EDX of the Ni coated Ni mesh

    Figure  2  Cyclic voltammogram for methanol oxidation in 0.5 mol/L H2SO4 /(0.5-1.5) mol/L methanol at a scan rate of 0.1 V/s without purging of N2

    Figure  3  SEM micrographs and EDX of the used electrode surface

    Figure  4  Cyclic voltammogram for methanol oxidation on varying the concentration of methanol from 0.5 mol/L to 2 mol/L in 0.5 mol/L H2SO4 at a scan rate of 0.1 V/s

    Figure  5  (a) Activation of Ni coated electrode in 0.5 mol/L NaOH solution at the scan rate of 0.1 V/s; (b) Cyclic voltammogram for methanol oxidation on varying the concentration of methanol from 0.5 to 2 in 0.5 mol/L NaOH at a scan rate of 0.1 V/s

    Figure  6  Plot of methanol concentration vs peak current density in 0.5 mol/L acidic and alkaline medium at scan rate of 0.1 V/s

    Figure  7  Influence of varying the concentration of H2SO4 (a) and NaOH (b) at a scan rate of 0.1 V/s in presence of 1.5 mol/L methanol

    Figure  8  Cyclic voltammogram at different scan rates starting from 0.1 to 0.4 V/s in ((a), (b)) 0.5 mol/L H2SO4; and ((c), (d)) 0.5 mol/L NaOH in presence of 1.5 mol/L methanol

    Figure  9  Influence of the thickness of the catalytic layer for MOR in presence of 1.5 mol/L methanol/ 0.5 mol/L H2SO4 at a scan rate of 0.1 V/s

    Figure  10  Influence of the thickness of the catalytic layer for MOR in presence of 1 mol/L methanol/ 0.5 mol/L NaOH at a scan rate of 0.1 V/s

    Figure  11  AFM image of the fabricated electrode coated with Ni for (a) 10 min and (b) 20 min

  • [1] YI Q, HUANG W, JZHANG J, LIU X, LI L. Methanol oxidation on titanium-supported nano-scale Ni flakes[J]. Catal Commun, 2008, 9(10):2053-2058. doi: 10.1016/j.catcom.2008.03.051
    [2] QIAO Y, LI C. Nanostructured catalysts in fuel cells[J]. J Mater Chem, 2011, 21(12):4027-4036. doi: 10.1039/C0JM02871A
    [3] ANTOLINI E, SALGADO J, GONZALEZ E. The methanol oxidation reaction on platinum alloys with the first row transition metals-The case of Pt-Co and-Ni alloy electrocatalysts for DMFCs:A short review[J]. Appl Catal B:Environ, 2006, 63(1/2):137-149. https://www.sciencedirect.com/science/article/pii/S0926337305003498
    [4] COLMENARES L, GUERRINI E, JUSYS X, NAGABHUSHANA K S, DINJUS E, BEHRENS S, HABICHT W, BONNEMANN H, BEHM R J. Activity, selectivity, and methanol tolerance of novel carbon-supported Pt and Pt3Me (Me=Ni, Co) cathode catalysts[J]. J Appl Electrochem, 2007, 37(12):1413-1427. doi: 10.1007/s10800-007-9353-x
    [5] FENG Y, YANG J, LIU H, YE F, YANG J. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell[J]. Scientific Reports, 4, 3813, 1-7, DOI: 10.1038/srep03813.
    [6] WANG C, REN F, ZHAI C, ZHANG K, YANG B, BIN D, WANG H, YANG P, DU Y. Au-Cu-Pt ternary catalyst fabricated by electro deposition and galvanic replacement with superior methanol electro oxidation activity[J]. RSC Adv, 2014, 4(101):57600-57607. doi: 10.1039/C4RA08949A
    [7] JING M, JIANG L, YI B, SUN G. Comparative study of methanol adsorption and electro-oxidation on carbon supported platinum in acidic and alkaline electrolytes[J]. J Electroanal Chem, 2013, 68:172-179. https://www.sciencedirect.com/science/article/pii/S1572665712004481
    [8] AMIN R S, HAMEED R M A, EL-KHATIB K M. Microwave heated synthesis of carbon supported Pd, Ni and Pd-Ni nanoparticles for methanol oxidation in KOH solution[J]. Appl Catal B:Environ, 2014, 148:557-567. https://www.sciencedirect.com/science/article/pii/S0926337313007054
    [9] ANTOLINI E, GONZALEZ E R. Effect of synthesis method and structural characteristics of Pt-Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium[J]. Cataly Today, 2011, 160(1):28-38. doi: 10.1016/j.cattod.2010.07.018
    [10] LIMA A, COUTANCEAU C, LEA J M, LAMY C. Investigation of ternary catalysts for methanol electro oxidation[J]. J Appl Electrochem, 2001, 31(4):376-386. http://cn.bing.com/academic/profile?id=b382d06dae934780e309328aeaa9d8b9&encoded=0&v=paper_preview&mkt=zh-cn
    [11] HSIEH C, WEI J, LIN J, HAO B. Preparation of Pt-Co nanocatalysts on carbon nanotube electrodes for direct methanol fuel cells[J]. Diamond Relat Mater, 2011, 20(7):1065-1071. doi: 10.1016/j.diamond.2010.10.009
    [12] XIONG L, YANG X, XU M, XU Y, WU D. Pt-Ni alloy nanoparticles supported on multiwalled carbon nanotubes for methanol oxidation in alkaline media[J]. J Solid State Electrochem, 2013, 17(3):805-810. doi: 10.1007/s10008-012-1905-2
    [13] SANDOVAL-GONZ'ALEZ A, BORJA-ARCO E, ESCALANTE J, JIM'ENEZ O, GAMBOA S A. Methanol oxidation reaction on PtSnO2 obtained by microwave-assisted chemical reduction[J]. Int J Hydrogen Energy, 2012, 37(2):1752-1759. doi: 10.1016/j.ijhydene.2011.10.049
    [14] PARK K W, CHOI J H, LEE S A, PAK C, CHANG H, SUNG Y E. PtRuRhNi nanoparticle electro catalyst for methanol electro oxidation in direct methanol fuel cell[J]. J Catal, 2004, 224(2):236-242. doi: 10.1016/j.jcat.2004.02.010
    [15] RAHIM M A A, HAMEED R M H, KHALIL M W. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium[J]. J Power Sources, 2004, 134(2):160-169. doi: 10.1016/j.jpowsour.2004.02.034
    [16] SKOWRONI J M, ZNYN A W. Nickel foam-based composite electrodes for electro oxidation of methanol[J]. J Solid State Electrochem, 2005, 9(12):890-899. doi: 10.1007/s10008-005-0046-2
    [17] GOLIKAND A N, ASGARI M, GHANNADI M, SHAHROKHIAN S M. Methanol electro oxidation on a nickel electrode modified by nickel-dimethylglyoxime complex formed by electrochemical synthesis[J]. J Electroanaly Chem, 2006, 588(1):155-160. doi: 10.1016/j.jelechem.2005.11.033
    [18] DURGADEVI N, SUNITHA M, ASHA S, GUHAN S, RAMACHANDRAN T. Electro oxidation of methanol on Ni/Ni-Co coated SS mesh electrode[J]. Indian J Sci Technol, 2016, 9(1):1-10. http://cn.bing.com/academic/profile?id=ed6b58240eea90464a0243142d7c5a51&encoded=0&v=paper_preview&mkt=zh-cn
    [19] DAS S, DUTTA K, KUNDU P P. Nickel nanocatalysts supported on sulfonated polyaniline:Potential toward methanol oxidation and as anode materials for DMFCs[J]. J Mater Chem A, 2015, 3(21):11349-11357. doi: 10.1039/C5TA01837D
    [20] TOMINAKA S, MOMMA T, OSAKA T. Electrodeposited Pd-Co catalyst for direct methanol fuel cell electrodes:Preparation and characterization[J]. Electrochim Acta, 2008, 53(14):4679-4686. doi: 10.1016/j.electacta.2008.01.069
    [21] YU E H, SCOTT K. Direct methanol alkaline fuel cell with catalyzed metal mesh anodes[J]. Electrochem Commun, 2004, 6(21):361-365. doi: 10.1016/j.elecom.2004.02.002
    [22] YI Q, HUANG W, YU W, LI L, LIU X P. Fabrication of novel titanium-supported Ni-Sn catalysts for methanol electro-oxidation[J]. Chin J Chem, 2008, 26(8):1367-1372. doi: 10.1002/cjoc.v26:8
    [23] HOSSEINI M G, ABDOLMALEKI M, ASHRAFPOOR S. Methanol electro oxidation on a porous nanostructured Ni/PdNi electrode in alkaline media[J]. Chin J Catal, 2013, 34(9):1712-1719. doi: 10.1016/S1872-2067(12)60643-3
    [24] TELLI E, SOLMAZ R, KARDA G. Electro catalytic oxidation of methanol on Pt/NiZn electrode in alkaline medium[J]. Russian J Electrochem, 2011, 47(7):811-818. doi: 10.1134/S1023193511070135
    [25] SHEIKH A M, EBN-ALWALED ABD-AlFTAH K, MALFATTI C F. On reviewing the catalyst materials for direct alcohol fuel cells (DAFCs)[J]. JMEST, 2014, 1(3):1-10. http://www.jmest.org/wp-content/uploads/JMESTN42350050.pdf
    [26] SEROV A, KWAK C. Review of non-platinum anode catalysts for DMFC and PEMFC application[J]. Appl Catal B:Environ, 2009, 90(3/4):313-320. https://www.sciencedirect.com/science/article/pii/S0926337309001246
    [27] TRIPKOVIC A V, POPOVIC K D, GRGUR B N, BLIZANAC B, ROSS P N, MARKOVIC N M. Methanol electro oxidation on supported Pt and Pt/Ru catalysts in acid and alkaline solutions[J]. Electrochim Acta, 2002, 47(22/23):3707-3714. doi: 10.1016/S0013-4686(02)00340-7
    [28] JAFARIAN M, MOGHADDAM R B, MAHJANI M G, GOBAL A F. Electro-catalytic oxidation of methanol on a Ni-Cu alloy in alkaline medium[J]. J Appl Electrochem, 2006, 36(8):913-918. doi: 10.1007/s10800-006-9155-6
    [29] MATHIYARASU J, REMONA A M, MANI A, PHANI K L N, YEGNARAMAN V. Exploration of electrodeposited platinum alloy catalysts for methanol electro-oxidation in 0.5 M H2SO4[J]. J Solid State Electrochem, 2004, 8(12):968-975. doi: 10.1007/s10008-004-0526-9
    [30] SANLI A E, AYTAÇ A. Electrochemistry of the nickel electrode as a cathode catalyst in the media of acidic peroxide for application of the peroxide fuel cell[J]. J Electrochem Soc, 2012, 42(1):3-22. https://www.researchgate.net/profile/Ayse_Elif_Sanli/publication/278080397_Electrochemistry_of_The_Nickel_Electrode_as_a_Cathode_Catalyst_In_The_Media_Of_Acidic_Peroxide_For_Application_of_The_Peroxide_Fuel_Cell/links/5704fee108ae44d70ee30320.pdf?origin=publication_list
    [31] PEIRIS M C R, UDUGALA-GANEHENEGE M Y. Electro catalytic activity of (Bis (salicylaldehyde) ethylenediamino) Ni (I) complex for CO2 reduction[J]. INJSED, 2016, 7(2):91-94. https://www.researchgate.net/publication/279514868_Electrocatalytic_Activity_of_BissalicylaldehydeethylenediaminoNiII_Complex_for_CO2_Reduction
    [32] BARAKAT N A M, MOTLAK M, KIM B, EL-DEEN A, HAMZAF A M. Carbon nanofibers doped by NixCo1-x alloy nanoparticles as effective and stable non precious electro catalyst for methanol oxidation in alkaline media[J]. J Mol Catal A:Chem, 2014, 394:177-187. doi: 10.1016/j.molcata.2014.07.011
    [33] RISBUD M S, BAXTER S, SKYLLAS-KAZACOS M. Preparation of nickel modified carbon fibre electrodes and their application for methanol oxidation[J]. Open Fuels Energy Sci J, 2012, 5:9-20. doi: 10.2174/1876973X01205010009
    [34] SANTASALO-AARNIO A, TUOMI S, JALKANEN K, KONTTURI K, KALLIO T. The correlation of electrochemical and fuel cell results for alcohol oxidation in acidic and alkaline media[J]. Electrochim Acta, 2013, 87:730-738. doi: 10.1016/j.electacta.2012.09.100
    [35] TARRUS X, MONTIEL M, VALLES R, GOMEZ E. Electro catalytic oxidation of methanol on CoNi electrodeposited materials[J]. Int J Hydrogen Energy, 2014, 39(12):6705-6713. doi: 10.1016/j.ijhydene.2014.02.057
    [36] OJANI R, RAOOF J, ZAVVARMAHALLEH S R H. Electro catalytic oxidation of methanol on carbon paste electrode modified by nickel ions dispersed into poly (1, 5-diaminonaphthalene) film[J]. Electrochimi Acta, 2008, 53(5):2402-2407. doi: 10.1016/j.electacta.2007.10.004
    [37] HAMEED R M A, AMIN R S. Influence of metal oxides on platinum activity towards methanol oxidation in H2SO4 solution[J]. Chem Phys Chem, 2016, 17(7):1054-1061. doi: 10.1002/cphc.v17.7
    [38] ALLEN R, CHAN L, YANG L, SCOTT K, ROY S. Novel anode structure for direct methanol fuel cell[J]. J Power Sources, 2005, 143(1/2):142-149. https://www.sciencedirect.com/science/article/pii/S0378775304011966
    [39] DENG Z, YI Q, ZHANG Y, NIE H. NiCo/C-N/CNT composite catalysts for electro-catalytic oxidation of methanol and ethanol[J]. J Electroanal Chem, 2017, 803:95-103. doi: 10.1016/j.jelechem.2017.09.025
  • 加载中
图(11)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  18
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-13
  • 修回日期:  2018-02-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-05-10

目录

    /

    返回文章
    返回