留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

330 MW燃煤机组异相凝并对重金属排放控制的实验研究

刘静超 赵永椿 何永来 纪禺山 崔向峥 肖日宏 张军营 郑楚光

刘静超, 赵永椿, 何永来, 纪禺山, 崔向峥, 肖日宏, 张军营, 郑楚光. 330 MW燃煤机组异相凝并对重金属排放控制的实验研究[J]. 燃料化学学报(中英文), 2020, 48(11): 1386-1393.
引用本文: 刘静超, 赵永椿, 何永来, 纪禺山, 崔向峥, 肖日宏, 张军营, 郑楚光. 330 MW燃煤机组异相凝并对重金属排放控制的实验研究[J]. 燃料化学学报(中英文), 2020, 48(11): 1386-1393.
LIU Jing-chao, ZHAO Yong-chun, HE Yong-lai, JI Yu-shan, CUI Xiang-zheng, XIAO Ri-hong, ZHANG Jun-ying, ZHENG Chu-guang. Experimental research on the control of heavy metal emissions from 330 MW coal-fired unit by heterogeneous agglomeration[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1386-1393.
Citation: LIU Jing-chao, ZHAO Yong-chun, HE Yong-lai, JI Yu-shan, CUI Xiang-zheng, XIAO Ri-hong, ZHANG Jun-ying, ZHENG Chu-guang. Experimental research on the control of heavy metal emissions from 330 MW coal-fired unit by heterogeneous agglomeration[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1386-1393.

330 MW燃煤机组异相凝并对重金属排放控制的实验研究

基金项目: 

国家重点研发计划 2018YFB0605104

湖北省重点研发计划 2020BCA076

详细信息
  • 中图分类号: TK16

Experimental research on the control of heavy metal emissions from 330 MW coal-fired unit by heterogeneous agglomeration

Funds: 

National Key Research and Development Program 2018YFB0605104

Hubei Province Key Research and Development Program 2020BCA076

More Information
  • 摘要: 湖北某电厂1号机组容量为330 MW,配备双室四电场静电除尘器,为了考察异相凝并技术对细颗粒物以及重金属脱除效率的影响,对1号机组除尘器前后,脱硫塔后进行颗粒物与重金属采样测试。结果表明,在烟道中喷射凝并吸附剂后,ESP入口颗粒态重金属占比增加,其中,Se元素在PM2.5和PM10上增加尤为明显,而气态的重金属含量有所降低,表明凝并吸附剂增强了颗粒态重金属的凝并效果,小颗粒态与气态重金属通过异相凝并过程转移至大颗粒态。喷入凝并吸附剂后,石膏中重金属含量显著降低,说明能够进入脱硫石膏的重金属含量减少,异相凝并提升了ESP对重金属的脱除作用;在尾部烟道末端烟囱排放口采样点,重金属含量相较于未喷入凝并吸附剂的工况,有着明显的降低,表明了经过异相凝并之后,排放至大气中的重金属显著减少,异相凝并对于重金属的控制起到关键作用。
  • 图  1  异相凝并系统示意图

    Figure  1  Schematic diagram of heterogeneous agglomeration system

    图  2  颗粒物吸附机制

    Figure  2  Particle adsorption mechanism

    图  3  采样装置示意图

    Figure  3  Schematic diagram of sampling device

    图  4  颗粒物中As含量变化

    Figure  4  Changes in As content in particles

    图  5  颗粒物中Se含量变化

    Figure  5  Changes in Se content in particles

    图  6  颗粒物中Pb含量变化

    Figure  6  Changes in Pb content in particles

    图  7  气态As质量浓度变化

    Figure  7  Changes in gaseous As concentration

    图  8  气态Se质量浓度变化

    Figure  8  Changes in gaseous Se concentration

    图  9  气态Pb质量浓度变化

    Figure  9  Changes in gaseous Pb concentration

    图  10  气态与PM10上重金属质量浓度之和变化

    Figure  10  Heavy metal concentration in both PM10 and the flue gas

    图  11  WFGD后烟气重金属总质量浓度

    Figure  11  Total concentration of heavy metals in flue gas after desulfurization

    表  1  煤样的元素分析和工业分析

    Table  1  Ultimate analysis and proximate analysis of coal samples

    Ultimate analysis w/%Heavy metals content /(μg·g-1)Proximate analysis w/%Qnet, ar /(MJ·kg-1)
    CHNSOAsSePbMt-arMadAarVdaf
    60.22.70.71.54.94.11.853.38.306.923.016.022.6
    下载: 导出CSV

    表  2  异相凝并系统参数

    Table  2  Parameters for an agglomeration system

    ProjectUnitParameter
    Adsorbent supply capacitykg/h2-4
    Dilution water supply capacitykg/h18000
    Compressed air supply capacitym3/min30
    Installed power of agglomeration devicekW< 50
    Installed power of air compressorkW180
    下载: 导出CSV

    表  3  采样参数

    Table  3  Sampling parameters

    Sampling siteAdsorbentSuction volume /LLoad/MW
    Before ESPwith20300
    After ESPwith1045300
    After WFGDwith1230300
    Before ESPwithout20300
    After ESPwithout1465300
    After WFGDwithout1800300
    下载: 导出CSV

    表  4  颗粒物采样

    Table  4  Particle sampling concentration results in size

    Sampling siteAdsorbent2.5-10 μm/(mg·m-3)1-2.5 μm/(mg·m-3)< 1 μm/(mg·m-3)
    Before ESPwith31.044.098.5
    Before ESPwithout183.5927.0102.0
    After ESPwith0.492.081.69
    After ESPwithout0.070.023.50
    下载: 导出CSV

    表  5  固体样中重金属的含量

    Table  5  Concentrations of heavy metals in solid samples

    Samplew/(μg·g-1)
    AsSePb
    limestone9.023.8810.43
    Slag0.370.1115.09
    ESP fly ash without adsorbent18.808.09234.01
    ESP fly ash with adsorbent19.539.19243.96
    Gypsum without adsorbent11.106.7615.56
    Gypsum with adsorbent7.522.1910.89
    下载: 导出CSV

    表  6  脱硫废水中重金属的含量

    Table  6  Concentrations of heavy metals in a desulfurization wastewater

    Samplew/(μg·g-1)
    AsSePb
    Desulfurization wastewater0.851.640.13
    下载: 导出CSV

    表  7  各元素质量平衡率

    Table  7  Mass balance rate for each element

    AdsorbentMBR /%
    AsSePb
    With97.45103.8290.88
    Without96.1198.8787.45
    下载: 导出CSV

    表  8  各元素在各产物中的富集

    Table  8  The enrichment of each element in each product

    Adsorbent elementWith /%Without /%
    AsSePbAsSePb
    Fly ash95.1396.4598.3892.8789.2198.07
    Slag0.320.201.070.330.211.12
    Gypsum4.532.840.546.799.230.81
    Desulfurization wastewater0.702.930.010.713.070.01
    Air0.010.470.010.011.320.01
    下载: 导出CSV
  • [1] International Energy Agency (IEA). World Energy Outlook 2018[M].Paris: OECD Publishing, 2018
    [2] 郭新彪, 魏红英.大气PM2.5对健康影响的研究进展[J].科学通报, 2013, 58(13): 1171-1177. http://qikan.cqvip.com/Qikan/Article/Detail?id=45934939

    GUO Xin-biao, WEI Hong-ying. Research progress on the impact of atmospheric PM2.5 on health[J]. Sci Bull, 2013, 58(13): 1171-1177. http://qikan.cqvip.com/Qikan/Article/Detail?id=45934939
    [3] 付高平.成都市微细颗粒物(PM2.5)形成机理及对人类健康危害研究[D].成都: 西南交通大学, 2014.

    FU Gao-ping. Research on the formation mechanism of fine particulate matter (PM2.5) in Chengdu and its harm to human health[D]. Chengdu: Southwest Jiaotong University, 2014.
    [4] NEAS L M. Fine particulate matter and cardiovascular disease[J]. Fuel Process Technol, 2000, 65-66: 55-67. https://www.sciencedirect.com/science/article/pii/S0378382099000764
    [5] PUI D Y H, CHEN S C, ZUO Z L. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation[J]. Particuology, 2014, 13: 1-26. http://www.cnki.com.cn/Article/CJFDTotal-JCSP201402001.htm
    [6] CHEN G Y, SUN Y N, WANG Q, YAN B B, CHENG Z J, MA W C. Partitioning of trace elements in coal combustion products: A comparative study of different applications in China[J]. Fuel, 2019, 240: 31-39. https://www.sciencedirect.com/science/article/pii/S0016236118320271
    [7] ZHOU C C, LIU G J, WU D, FANG T, WANG R W, FAN X. Mobility behavior and environmental implications of trace elements associated with coal gangue: A case study at the Huainan Coalfield in China[J]. Chemosphere, 2014, 95: 193-199. http://www.ncbi.nlm.nih.gov/pubmed/24050719
    [8] 华伟, 孙和泰, 祁建民, 黄治军, 石志鹏, 段伦博.燃煤电厂超低排放机组重金属铅、砷排放特性[J].热力发电, 2019, 48(10): 65-70. http://www.cnki.com.cn/Article/CJFDTotal-RLFD201910012.htm

    HUA Wei, SUN He-tai, QI Jian-min, HUANG Zhi-jun, SHI Zhi-peng, DUAN Lun-bo. Heavy metal lead and arsenic emission characteristics of ultra-low emission units in coal-fired power plants[J]. Therm Power Gener, 2019, 48(10): 65-70. http://www.cnki.com.cn/Article/CJFDTotal-RLFD201910012.htm
    [9] WEI F, ZHANG J Y, ZHENG C G. Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion[J]. J Environ Sci, 2005, 17(2): 335-339. http://www.cnki.com.cn/Article/CJFDTotal-HJKB200502034.htm
    [10] LI H L, ZHANG J Y, ZHAO Y C, WU C Y, ZHENG C G. Wettability of fly ashes from four coal-fired power plants in China[J]. Ind Eng Chem Res, 2011, 50(13): 7763-7771. doi: 10.1021/ie2001378
    [11] 李志超, 段钰锋, 王运军, 黄治军, 孟素丽, 沈解忠. 300 MW燃煤电厂ESP和WFGD对烟气汞的脱除特性[J].燃料化学学报, 2013, 41(4): 491-498. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18171.shtml

    LI Zhi-chao, DUAN Yu-feng, WANG Yun-jun, HUANG Zhi-jun, MENG Su-li, SHEN Jie-zhong. The removal characteristics of flue gas mercury by ESP and WFGD in 300 MW coal-fired power plants[J]. J Fuel Chem Technol, 2013, 41(4): 491-498. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18171.shtml
    [12] 李海龙, 张军营, 赵永椿, 张凯, 张立麒, 郑楚光.燃煤飞灰物理化学特性及其润湿机理研究[J].工程热物理学报, 2009, 30(9): 1597-1600. http://www.cqvip.com/Main/Detail.aspx?id=31431892

    LI Hai-long, ZHANG Jun-ying, ZHAO Yong-chun, ZHANG Kai, ZHANG Li-qi, ZHENG Chu-guang. Study on the physical and chemical properties of coal-fired fly ash and its wetting mechanism[J]. J Eng Thermophys, 2009, 30(9): 1597-1600. http://www.cqvip.com/Main/Detail.aspx?id=31431892
    [13] 魏凤.燃煤亚微米颗粒的形成和团聚机制的研究[D].武汉: 华中科技大学, 2005.

    WEI Feng. Research on the formation and agglomeration mechanism of coal-fired sub-micron particles[D]. Wuhan: Huazhong University of Science and Technology, 2005.
    [14] RAJNIAK P, STEPANEK F, DHANASEKHARAN K, FAN R, MANCINELLI C, CHERN R T. A combined experimental and computational study of wet granulation in a Wurster fluid bed granulator[J]. Powder Technol, 2009, 189(2): 190-201. http://www.sciencedirect.com/science/article/pii/S0032591008001885
    [15] HU B, YI Y, LIANG C, YUAN Z L, ROSZAK S, YANG L J. Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators[J]. Powder Technol, 2018, 335: 186-194. https://www.sciencedirect.com/science/article/pii/S0032591018302882
    [16] 郭沂权, 赵永椿, 李高磊, 张军营. 300MW燃煤电站化学团聚强化飞灰细颗粒物排放控制的研究[J].中国电机工程学报, 2019, 39(3): 754-763. http://d.wanfangdata.com.cn/periodical/zgdjgcxb201903012

    GUO Yi-quan, ZHAO Yong-chun, LI Gao-lei, ZHANG Jun-ying. Research on enhanced fly ash fine particulate emission control by chemical agglomeration of 300MW coal-fired power stations[J].Proc CSEE, 2019, 39(3): 754-763. http://d.wanfangdata.com.cn/periodical/zgdjgcxb201903012
    [17] GUO Y Q, ZHANG J Y, ZHAO Y C, WANG S L, JIANG C, ZHENG C G. Chemical agglomeration of fine particles in coal combustion flue gas: Experimental evaluation[J].Fuel, 2017, 3: 557-569. http://www.sciencedirect.com/science/article/pii/S001623611730577X
    [18] VIEBKE C, PICULELL, NILSSON S. On the mechanism of gelation of helix-forming biopolymers[J]. Macromolecules, 1994, 27(15): 4160-4166. doi: 10.1021/ma00093a017
    [19] 张凯.超细颗粒物微观团聚机理数值模拟研究[D].武汉: 华中科技大学, 2009.

    ZHANG Kai. Numerical simulation study on the micro-aggregation mechanism of ultrafine particles[D]. Wuhan: Huazhong University of Science and Technology, 2009.
    [20] LINAK W, WENDT J. Toxic metal emissions from incineration-mechanisms and control[J]. Prog Energy Combust Sci, 1993, 19(2): 145-185. http://www.sciencedirect.com/science/article/pii/0360128593900146
    [21] 祁倩倩.新疆燃煤电厂重金属分布规律及天然气锅炉汞的排放研究[D].新疆: 新疆师范大学, 2015.

    QI Qian-qian. Research on the distribution of heavy metals in Xinjiang coal-fired power plants and mercury emissions from natural gas boilers[D]. Xinjiang: Xinjiang Normal University, 2015.
    [22] 李敬伟.燃煤烟气中可凝结颗粒物及典型有机污染物的排放特性实验研究[D].浙江: 浙江大学, 2018.

    LI Jing-wei. Experimental study on the emission characteristics of condensable particulate matter and typical organic pollutants in coal-fired flue gas[D]. Zhejiang: Zhejiang University, 2018.
    [23] ZHAO S L, DUAN Y F, LU J C, GUPTA R, PUDASAINEE D, LIU S, LIU M. Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants[J]. Fuel, 2018, 232: 463-469. http://www.sciencedirect.com/science/article/pii/S0016236118309694
    [24] 张凯华, 张锴, 潘伟平. 300MW燃煤电站砷、汞排放特征研究[J].燃料化学学报, 2013, 41(7): 839-844. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18219.shtml

    ZHANG Kai-hua, ZHANG Kai, PAN Wei-ping. Research on arsenic and mercury emission characteristics of 300MW coal-fired power station[J]. J Fuel Chem Technol, 2013, 41(7): 839-844. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18219.shtml
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  32
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-10-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-11-10

目录

    /

    返回文章
    返回