留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧气对褐煤水蒸气气化半焦的活化及机理

申恬 王永刚 林雄超 张海永 许德平

申恬, 王永刚, 林雄超, 张海永, 许德平. 氧气对褐煤水蒸气气化半焦的活化及机理[J]. 燃料化学学报(中英文), 2018, 46(11): 1288-1297.
引用本文: 申恬, 王永刚, 林雄超, 张海永, 许德平. 氧气对褐煤水蒸气气化半焦的活化及机理[J]. 燃料化学学报(中英文), 2018, 46(11): 1288-1297.
SHEN Tian, WANG Yong-gang, LIN Xiong-chao, ZHANG Hai-yong, XU De-ping. Activation and mechanism of O2 on chars from lignite steam gasification[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1288-1297.
Citation: SHEN Tian, WANG Yong-gang, LIN Xiong-chao, ZHANG Hai-yong, XU De-ping. Activation and mechanism of O2 on chars from lignite steam gasification[J]. Journal of Fuel Chemistry and Technology, 2018, 46(11): 1288-1297.

氧气对褐煤水蒸气气化半焦的活化及机理

基金项目: 

国家科技支撑计划项目 2012BAA04B02

详细信息
  • 中图分类号: TQ546

Activation and mechanism of O2 on chars from lignite steam gasification

Funds: 

the National Key Technology Research 2012BAA04B02

More Information
  • 摘要: 以胜利褐煤为原料,利用一段流化床/固定床石英反应器,进行N2/O2/H2O/H2O+O2气氛的褐煤热解/气化实验。采用BET、Raman、FT-IR、微波消解ICP-AES、TGA等技术表征半焦。研究氧气添加对气化反应以及半焦结构和反应性的影响,解析了氧气对气化半焦的活化机理。结果表明,氧气添加可以改变半焦结构,活化半焦,从而促进转化率、H2产率和CO2产率的提高。氧气对气化半焦的活化作用主要包括两个方面,一是芳核与氧气发生氧化分解反应,破坏了芳环大π键,形成了新的官能团,从而促进了反应(C+H2O→H2+CO)的发生;二是随反应的进行,芳香大环(≥6)结构解聚为芳香小环(3-5)结构,同时氧原子进入芳核,形成缺陷位C-O-C,从而导致半焦微晶结构的缺陷程度提高、缩聚程度降低,进而导致半焦反应性和表面吸附作用提高,促进反应(CO+H2O→H2+CO2)的发生。
  • 图  1  实验装置示意图

    Figure  1  Experiment apparatus

    图  2  800℃不同氧气体积分数的褐煤水蒸气气化转化率

    Figure  2  Conversion of lignite steam gasification with different O2 concentrations at 800℃

    图  3  800 ℃不同氧气体积分数的褐煤水蒸气(25%)气化煤气组分产率

    Figure  3  Yield of gas components from lignite steam (25%) gasification with different O2 concentrations at 800 ℃

    HCG-CH4+C2H6+C2H4+C3H4+C3H8+i-C4

    图  4  800 ℃不同氧气体积分数的褐煤水蒸气(25%)气化半焦的比表面积

    Figure  4  Surface area of chars from lignite steam (25%) gasification with different O2 concentrations at 800 ℃

    图  5  800 ℃水蒸气体积分数25%时褐煤气化所得半焦的拉曼光谱分峰拟合

    Figure  5  Peak-fitting of a Raman spectrum of the char from gasification in 25% steam at 800 ℃

    图  6  800 ℃不同氧气体积分数的褐煤水蒸气(25%)气化半焦的拉曼微晶结构特征

    Figure  6  Characteristics of Raman microcrystalline structure of chars from lignite steam (25%) gasification with different O2 concentrations at 800 ℃

    图  7  800 ℃不同氧气体积分数的褐煤水蒸气(25%)气化半焦的ISL/IVR

    Figure  7  ISL/IVR of chars from lignite steam (25%) gasification with different O2 concentrations at 800 ℃

    图  8  800 ℃不同氧气体积分数的褐煤水蒸气(25%)气化半焦的红外吸收光谱谱图

    Figure  8  FT-IR of chars from lignite steam (25%) gasification with different O2 concentrations at 800 ℃

    图  9  800 ℃不同氧气体积分数的褐煤水蒸气(25%)气化半焦的CO2反应性能

    Figure  9  CO2 reactivity of chars from lignite steam (25%) gasification with different O2 concentrations at 800 ℃

    图  10  800 ℃不同氧气体积分数的褐煤水蒸气(25%)气化半焦的HNaHash

    Figure  10  HNa and Hash of chars from lignite steam (25%) gasification with different O2 concentrations at 800 ℃

    图  11  700 ℃不同氧气体积分数的褐煤水蒸气气化半焦的红外吸收光谱谱图

    Figure  11  FT-IR of chars from lignite steam gasification with different O2 concentrations at 700 ℃

    图  12  700 ℃不同氧气体积分数的褐煤水蒸气气化半焦的反应性

    Figure  12  Reactivity of chars from lignite steam gasification with different O2 concentrations at 700 ℃

    表  1  煤样的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of Shengli lignite

    Coal Proximate analysis /% Ultimate analysis wdaf/%
    Mad Vd Ad FCd C H O* N S
    Shengli lignite 5.69 26.25 12.96 60.79 70.97 5.24 20.72 1.46 1.61
    *:calculated by difference
    下载: 导出CSV
  • [1] 王永刚, 孙加亮, 张书.反应气氛对褐煤气化反应性及半焦结构的影响[J].煤炭学报, 2014, 39(8):1765-1771. http://d.old.wanfangdata.com.cn/Periodical/mtxb201408050

    WANG Yong-gang, SUN Jia-liang, ZHANG Shu. Impacts of the gas atmosphere on the gasification reactivity and char structure of the brown coal[J]. J China Coal Soc, 2014, 39(8):1765-1771. http://d.old.wanfangdata.com.cn/Periodical/mtxb201408050
    [2] 申恬, 王永刚, 程相龙, 林雄超.不同水蒸气浓度下褐煤气化半焦的活化及机理[J].燃料化学学报, 2017, 45(5):513-522. doi: 10.3969/j.issn.0253-2409.2017.05.001

    SHEN Tian, WANG Yong-gang, CHENG Xiang-long, LIN Xiong-chao. Activation and mechanism of chars from gasification of lignite at different steam concentration[J]. J Fuel Chem Technol, 2017, 45(5):513-522. doi: 10.3969/j.issn.0253-2409.2017.05.001
    [3] LI T T, ZHANG L, DONG L, LI C-Z. Effects of gasification atmosphere and temperature on char structural evolution during the gasification of Collie sub-bituminous coal[J]. Fuel, 2014, 117(part B):1190-1195. http://www.sciencedirect.com/science/article/pii/S0016236113007680
    [4] TAY H-L, KAJITANI S, ZHANG S, LI C-Z. Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal[J]. Fuel, 2013, 103:22-28. doi: 10.1016/j.fuel.2011.02.044
    [5] TAY H-L, KAJITANI S, ZHANG S, LI C-Z. Inhibiting and other effects of hydrogen during gasification:Further insights from FT-Raman spectroscopy[J]. Fuel, 2014, 116:1-6. doi: 10.1016/j.fuel.2013.07.066
    [6] 孙加亮, 陈绪军, 王芳, 林雄超, 王永刚.氧气对胜利褐煤水蒸气气化半焦结构及反应性的影响[J].燃料化学学报, 2015, 43(7):769-778. doi: 10.3969/j.issn.0253-2409.2015.07.001

    SUN Jia-liang, CHEN Xu-jun, WANG Fang, LIN Xiong-chao, WANG Yong-gang. Effects of oxygen on the structure and reactivity of char during steam gasification of Shengli brown coal[J]. J Fuel Chem Technol, 2015, 43(7):769-778. doi: 10.3969/j.issn.0253-2409.2015.07.001
    [7] 秦中宇, 王永刚, 戴瑾泽, 张雪莹, 林雄超. 10kg/h下行床褐煤低氧气化及半焦反应特性[J].煤炭转化, 2017, 40(4):23-29. doi: 10.3969/j.issn.1004-4248.2017.04.005

    QIN Zhong-yu, WANG Yong-gang, DAI Jin-ze, ZHANG Xue-ying, LIN Xiong-chao. Lignite gasification and semi-coke reactivity under low-oxygen volume fraction using a 10kg/h downdraft gasifier[J]. Coal Convers, 2017, 40(4):23-29. doi: 10.3969/j.issn.1004-4248.2017.04.005
    [8] 程相龙, 王永刚, 孙加亮, 申恬, 张海永, 许德平.氧化反应对胜利褐煤水蒸气气化反应的促进作用Ⅰ:宏观反应特性研究[J].燃料化学学报, 2017, 45(1):15-20. doi: 10.3969/j.issn.0253-2409.2017.01.003

    CHENG Xiang-long, WANG Yong-gang, SUN Jia-liang, SHEN Tian, ZHANG Hai-yong, XU De-ping. Promoting effect of oxidation reaction on steam gasification reaction in Shengli lignite gasification process Ⅰ:Macroscopic reaction characteristic[J]. J Fuel Chem Technol, 2017, 45(1):15-20. doi: 10.3969/j.issn.0253-2409.2017.01.003
    [9] 程相龙, 王永刚, 孙加亮, 申恬, 张海永, 许德平.氧化反应对胜利褐煤水蒸气气化反应的促进作用Ⅱ:作用机理研究[J].燃料化学学报, 2017, 45(2):138-146. doi: 10.3969/j.issn.0253-2409.2017.02.002

    CHENG Xiang-long, WANG Yong-gang, SUN Jia-liang, SHEN Tian, ZHANG Hai-yong, XU De-ping. Promoting effect of oxidation reaction on steam gasification reaction in Shengli lignite gasification process Ⅱ:Mechanism study[J]. J Fuel Chem Technol, 2017, 45(2):138-146. doi: 10.3969/j.issn.0253-2409.2017.02.002
    [10] LI X, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅶ. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006, 85(10/11):1509-1517. http://www.sciencedirect.com/science/article/pii/S0016236106000196
    [11] LI X, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10/11):1518-1525.
    [12] ZHANG L X, HUANG J J, FANG Y T, WANG Y. Gasification reactivity and kinetics of typical chinese anthracite chars with steam and CO2[J]. Energy Fuels, 2006, 20(3):1201-1210. doi: 10.1021/ef050343o
    [13] YE D P, AGNEW J B, ZHANG D K. Gasification of a south australian low-rank coal with carbon dioxide and steam:Kinetics and reactivity studies[J]. Fuel, 1998, 77(11):1209-1219. doi: 10.1016/S0016-2361(98)00014-3
    [14] ZHANG S, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅸ. Effects of volatile-char interactions on char-H2O and char-O2 reactivities[J]. Fuel, 2011, 90(4):1655-1661. doi: 10.1016/j.fuel.2010.11.008
    [15] TAY H L, KAJITANI S, ZHANG S, LI C Z. Inhibiting and other effects of hydrogen during gasification:Further insights from FT-Raman spectroscopy[J]. Fuel, 2014, 116:1-6. doi: 10.1016/j.fuel.2013.07.066
    [16] 翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社, 2010.

    WENG Shi-fu. Fourier Transform Infrared Spectroscopy[M]. Beijing:Chemical Industry Press, 2010.
    [17] LI C-Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12/13):1664-1683. http://www.sciencedirect.com/science/article/pii/S0016236107000361
    [18] MIN Z, YIMSIRI P, ASADULLAH M, ZHANG S, LI C Z. Catalytic reforming of tar during gasification. Part Ⅱ. Char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011, 90(7):2545-2552. doi: 10.1016/j.fuel.2011.03.027
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  45
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-25
  • 修回日期:  2018-08-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-11-10

目录

    /

    返回文章
    返回