留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高硫石油焦高温热解过程及硫析出特性研究

赵创 吴阳 汪大千 杨海平 张世红 陈汉平

赵创, 吴阳, 汪大千, 杨海平, 张世红, 陈汉平. 高硫石油焦高温热解过程及硫析出特性研究[J]. 燃料化学学报(中英文), 2020, 48(6): 683-688.
引用本文: 赵创, 吴阳, 汪大千, 杨海平, 张世红, 陈汉平. 高硫石油焦高温热解过程及硫析出特性研究[J]. 燃料化学学报(中英文), 2020, 48(6): 683-688.
ZHAO Chuang, WU Yang, WANG Da-qian, YANG Hai-ping, ZHANG Shi-hong, CHEN Han-ping. Study on high temperature pyrolysis process and sulfur transformation property of high sulfur petroleum coke[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 683-688.
Citation: ZHAO Chuang, WU Yang, WANG Da-qian, YANG Hai-ping, ZHANG Shi-hong, CHEN Han-ping. Study on high temperature pyrolysis process and sulfur transformation property of high sulfur petroleum coke[J]. Journal of Fuel Chemistry and Technology, 2020, 48(6): 683-688.

高硫石油焦高温热解过程及硫析出特性研究

基金项目: 

国家重点研发计划项目 2017YFB0602701-02

详细信息
  • 中图分类号: TD713

Study on high temperature pyrolysis process and sulfur transformation property of high sulfur petroleum coke

Funds: 

the National Key Research and Development Project of China 2017YFB0602701-02

More Information
  • 摘要: 为深入了解高硫石油焦在工业应用高温工况下的热解过程以及硫的析出特性,本研究采用高温固定床对青岛高硫石油焦进行了高温(900-1500℃)热解实验,考察了高温热解下热解气体释放规律,热解过程中焦的物理孔隙结构以及化学特性的演变,并对热解过程中硫的析出与演变特性进行了研究。结果表明,随着热解温度的升高,石油焦热解气中的H2含量逐渐增加,CO含量变化不大,CH4与CO2含量则逐渐下降;热解焦的比表面积与平均孔隙均随热解温度的升高有所增加,颗粒的表面形态则受温度影响较小;热解温度的升高会降低石油焦中含有的非定型碳比例,提高其微晶结构的有序性以及石墨化程度;热解焦的气化活性随热解温度的升高先降低后升高,在1100℃附近有最小值;1500℃高硫石油焦硫元素析出率达81.34%,仅少量硫醇类有机硫和噻吩环内的硫元素得以残存。
  • 图  1  石油焦热解气体分布

    Figure  1  Composition of petroleum coke pyrolysis gas

    图  2  石油焦颗粒的SEM照片

    Figure  2  SEM images of petroleum coke char

    图  3  SYJ-900热解石油焦Raman分峰拟合曲线

    Figure  3  Raman peaking fitting curve for SYJ-900 petroleum coke of pyrolysis

    图  4  石油焦不同温度热解样品的XRD谱图

    Figure  4  XRD patterns of petroleum cokes made at different pyrolysis temperatures

    图  5  石油焦不同温度热解样品的d002LC

    Figure  5  d002 and LC of petroleum coke made at different pyrolysis temperatures

    图  6  热解石油焦气化转化率曲线

    Figure  6  Gasification conversion of petroleum cokes derived at different pyrolysis temperatures

    图  7  不同温度热解石油焦红外光谱谱图

    Figure  7  FT-IR spectra of petroleum cokes made at different pyrolysis temperatures

    表  1  青岛高硫石油焦的工业分析和元素分析

    Table  1  Proximate analysis and ultimate analysis of Qingdao high sulfur petroleum coke

    Sample Proximate analysis
    wd/%
    Ultimate analysis
    w/%
    FC A V C H N S
    SYJ 85.62 0.11 14.27 86.76 4.05 0.15 6.97
    下载: 导出CSV

    表  2  不同温度热解石油焦的比表面积和平均孔径

    Table  2  BET surface and average pore size of petroleum coke made at different pyrolysis temperatures

    Sample SYJ-900 SYJ-1100 SYJ-1300 SYJ-1500
    SBET/(m2·g-1) 4.464 5.005 15.973 19.285
    Average pore size
    d/nm
    4.137 5.628 9.433 11.571
    下载: 导出CSV

    表  3  拉曼光谱分峰拟合数据

    Table  3  Parameters of curve-fitted Raman spectra

    Sample IG/IAll ID1/IG ID3/IG ID4/IG
    SYJ-900 0.20166 2.05958 0.44862 0.56203
    SYJ-1100 0.21468 2.03658 0.41839 0.56091
    SYJ-1300 0.23931 1.85613 0.34716 0.49604
    SYJ-1500 0.25810 1.81919 0.30466 0.46628
    下载: 导出CSV

    表  4  高温热解石油焦元素组成和硫、氮元素析出率

    Table  4  Ultimate analysis of different samples and the corresponding removal rate of nitrogen and sulfur

    Sample Utinate andysis w/% Removal rate η/%
    C H N S N S
    SYJ 86.76 4.05 1.27 6.97 - -
    SYJ-900 90.14 1.20 1.21 5.99 4.72 14.06
    SYJ-1100 92.41 0.90 1.05 5.52 17.32 20.80
    SYJ-1300 94.70 0.73 0.57 4.09 55.12 41.32
    SYJ-1500 96.59 0.78 0.23 1.30 81.89 81.34
    下载: 导出CSV
  • [1] 曲展鸿, 刘咏杭.煅烧焦市场分析与预测[J].轻金属, 2015, (7):5-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjs201507001

    QU Zhan-hong, LIU Yong-hang. Analysis and predication of calcined petroleum coke market[J]. Light Metals, 2015, (7):5-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjs201507001
    [2] TRIPATHI N, SINGH R S, HILLS C D. Microbial removal of sulphur from petroleum coke (petcoke)[J]. Fuel, 2019, 235:1501-1505. doi: 10.1016/j.fuel.2018.08.072
    [3] XIAO J, LI F, ZHONG Q F, HUANG J D, WANG B J, ZHANG Y B. Effect of high-temperature pyrolysis on the structure and properties of coal and petroleum coke[J]. J Anal Appl Pyrolysis, 2015, 117:64-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2fc25cb97fe8fa86e1ad3f5f16819dfe
    [4] ZHONG Q F, MAO Q Y, ZHANG L Y, XIANG J H, XIAO J. Structural features of Qingdao petroleum coke from HRTEM lattice fringes:Distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation[J]. Carbon, 2018, 129:790-802. doi: 10.1016/j.carbon.2017.12.106
    [5] EDWARDS L C, NEYREY K J, LOSSIUS L P. A review of coke and anode desulfurization[J]. TMS Light Metals, 2007:895-900. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026120397
    [6] 郭慧卿, 付琦, 王鑫龙, 刘粉荣, 胡瑞生, 张浩. CO2气氛对煤热解过程中硫逸出的影响[J].燃料化学学报, 2017, 45(5):523-528. doi: 10.3969/j.issn.0253-2409.2017.05.002

    GUO Hui-qing, FU Qi, WANG Xin-long, LIU Fen-rong, HU Rui-Sheng, ZHANG Hao. Effect of CO2 atmosphere on sulfur release during coal pyrolysis[J]. J Fuel Chem Technol, 2017, 45(5):523-528. doi: 10.3969/j.issn.0253-2409.2017.05.002
    [7] MILENKOVA K S, BORREGO A G, ALVAREZ D, XIBERTA J, MENENDZE R. Devolatilisation behaviour of petroleum coke under pulverised fuel combustion conditions[J]. Fuel, 2003, 82(15):1883-1891. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=82f855af1335ab5ee9c8ab735b50fe0e
    [8] IRFAN M F, USMAN M R, KUSAKABE K. Coal gasification in CO2 atmosphere and its kinetics since 1948:A brief review[J]. Energy, 2011, 36(1):12-40. https://www.academia.edu/31799677/Coal_gasification_in_CO2_atmosphere_and_its_kinetics_since_1948_A_brief_review
    [9] 梁永煌, 游伟, 章卫星.我国洁净煤气化技术现状与存在的问题及发展趋势(上)[J].化肥工业, 2013, 40(6):30-36. http://d.old.wanfangdata.com.cn/Periodical/hfgy201306011

    LIANG Yong-huang, YOU Wei, ZHANG Wei-xing. The current situation and development trend of clean coal gasification technology in china (Ⅰ)[J]. Chem Fert Ind, 2013, 40(6):30-36. http://d.old.wanfangdata.com.cn/Periodical/hfgy201306011
    [10] 胡启静, 刘鑫, 周志杰, 于广锁.氯化铁对高硫石油焦-CO2气化的催化作用[J].石油学报(石油加工), 2012, 28(3):463-469. doi: 10.3969/j.issn.1001-8719.2012.03.018

    HU Qi-jing, LIU Xin, ZHOU Zhi-jie, YU Guang-suo. Catalytic activity of ferric chloride for high-sulfur petroleum coke-carbon dioxide gasification[J].Acta Pet Sin (Pet Process Sect), 2012, 28(3):463-469. doi: 10.3969/j.issn.1001-8719.2012.03.018
    [11] GUO Z, FU Z, WAMG S. Sulfur distribution in coke and sulfur removal during pyrolysis[J]. Fuel Process Technol, 2007, 88(10):935-941. doi: 10.1016/j.fuproc.2007.05.003
    [12] 袁帅, 陈雪莉, 李军, 代正华, 周志杰, 王辅臣.煤快速热解固相和气相产物生成规律[J].化工学报, 2011, 62(5):204-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201105030

    YUAN Shuai, CHEN Xue-li, LI Jun, DAI Zheng-hua, ZHOU Zhi-jie, WANG Fu-chen. Formations of solid and gas phase products during rapid pyrolysis of coal[J]. CIESC J, 2011, 62(5):204-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201105030
    [13] 吴幼青.不同热解过程产物炭的理化性质及石油焦催化气化反应特性研究[D].上海: 华东理工大学, 2011. http://d.wanfangdata.com.cn/thesis/Y1859294

    WU You-qing. Studies on physico-chemical properties of resultant carbons from different pyrolysis processes and catalytic gasification reaction characteristics of petroleum coke[D]. Shanghai: East China University of Science and Technology, 2011. http://d.wanfangdata.com.cn/thesis/Y1859294
    [14] SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, POSCHL U. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
    [15] 刘冬冬, 高继慧, 吴少华, 秦裕琨.热解过程煤焦微观结构变化的XRD和Raman表征[J].哈尔滨工业大学学报, 2016, 48(7):39-45. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201607006

    LIU Dong-dong, GAO Ji-hui, WU Shao-hua, QIN Yu-kun. XRD and Raman characterization of microstructure changes of char during pyrolysis[J]. J Harbin Inst Technol, 2016, 48(7):39-45. http://d.old.wanfangdata.com.cn/Periodical/hebgydxxb201607006
    [16] 朱亚明, 赵雪飞, 高丽娟, 程俊霞, 吕君, 赖仕全.煤系针状焦微晶结构的XRD与Raman分峰拟合定量研究[J].光谱学与光谱分析, 2017, 37(6):1919-1924. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201706049

    ZHU Ya-ming, ZHAO Xue-fei, GAO Li-juan, CHENG Jun-xia, LV Jun, LAI Shi-quan. Quantitative study of the microcrystal structure on coal based on needle coke with curve-fitted of XRD and Raman spectrum[J]. Spectrosc Spectral Anal, 2017, 37(6):1919-1924. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201706049
    [17] LU L, SAHAJWALLA V, HARRIS D. Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace[J]. Energy Fuels, 2000, 14(4):869-876. doi: 10.1021/ef990236s
    [18] WU Y Q, WU S Y, GAO J S. Differences in physical properties and CO2 gasification reactivity between coal char and petroleum coke[J]. Process Saf Environ Prot, 2009, 87(5):323-330. doi: 10.1016/j.psep.2009.05.001
    [19] ZHONG Q F, XIAO J, DU H J, YAO Z. Thiophenic sulfur transformation in a carbon anode during the aluminum electrolysis process[J]. Energy Fuels, 2017, 31(4):4539-4547. doi: 10.1021/acs.energyfuels.6b03018
    [20] 陈喜平, 周孑民, 李旺兴.阳极石油焦的煅烧脱硫研究[J].轻金属, 2007:93-96. http://d.old.wanfangdata.com.cn/Conference/7292590

    CHEN Xi-ping, ZHOU Jie-min, LI Wang-xing. Study on desulphurization by calcination of anode petroleum coke[J]. Light Met, 2007:93-96. http://d.old.wanfangdata.com.cn/Conference/7292590
    [21] 杨彦成, 陶秀祥, 许宁, 罗来芹.煤中含硫基团FTIR表征的可行性分析[J].中国科技论文, 2015, 10(18):2110-2116. doi: 10.3969/j.issn.2095-2783.2015.18.003

    YANG Yan-cheng, TAO Xiu-xiang, XU Ning, LUO Lai-qin. Feasibility study on the FTIR characterization of sulfur-containing groups in coal[J]. China Sciencepaper, 2015, 10(18):2110-2116. doi: 10.3969/j.issn.2095-2783.2015.18.003
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  161
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-03
  • 修回日期:  2020-05-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-06-10

目录

    /

    返回文章
    返回