留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2-CeO2光催化吸附协同脱除柴油中的有机硫

李鑫 童靖予 张伟 王虹 宋永吉 王思琪 李翠清

李鑫, 童靖予, 张伟, 王虹, 宋永吉, 王思琪, 李翠清. TiO2-CeO2光催化吸附协同脱除柴油中的有机硫[J]. 燃料化学学报(中英文), 2017, 45(5): 608-615.
引用本文: 李鑫, 童靖予, 张伟, 王虹, 宋永吉, 王思琪, 李翠清. TiO2-CeO2光催化吸附协同脱除柴油中的有机硫[J]. 燃料化学学报(中英文), 2017, 45(5): 608-615.
LI Xin, TONG Jing-yu, ZHANG Wei, WANG Hong, SONG Yong-ji, WANG Si-qi, LI Cui-qing. Synergy of photocatalysis and adsorption on TiO2-CeO2 for the removal of organosulfur compounds from diesel fuel[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 608-615.
Citation: LI Xin, TONG Jing-yu, ZHANG Wei, WANG Hong, SONG Yong-ji, WANG Si-qi, LI Cui-qing. Synergy of photocatalysis and adsorption on TiO2-CeO2 for the removal of organosulfur compounds from diesel fuel[J]. Journal of Fuel Chemistry and Technology, 2017, 45(5): 608-615.

TiO2-CeO2光催化吸附协同脱除柴油中的有机硫

基金项目: 

国家自然科学基金 21646003

北京市优秀人才培养项目 2014000020124G087

北京市大学生科研训练项目 2016J00077

详细信息
    通讯作者:

    张伟, Tel: 010-81292131, E-mail: wzhang@bipt.edu.cn

    李翠清, Tel: 010-81292131, E-mail: licuiqing@bipt.edu.cn

  • 中图分类号: TQ028.3

Synergy of photocatalysis and adsorption on TiO2-CeO2 for the removal of organosulfur compounds from diesel fuel

Funds: 

the National Natural Science Foundation of China 21646003

the Talents Project of Beijing 2014000020124G087

the Undergraduate Research Program 2016J00077

  • 摘要: 采用共沉淀法制备TiO2-CeO2光催化吸附脱硫材料,通过低温N2吸附脱附和X射线衍射等技术对TiO2-CeO2的物理化学性质进行了表征。结果表明,紫外光辐射显著提高了TiO2-CeO2的吸附脱硫性能;柴油中有机硫在TiO2-CeO2表面发生了光催化氧化转化为极性较强的砜类,可选择性地吸附在材料表面而被脱除。当TiO2-CeO2材料中钛铈物质的量比为9:1、煅烧温度为500℃时,其光催化吸附协同脱硫效果最好;在紫外光辐射下反应5 h,油品中DBT的脱除率高达99.6%。TiO2-CeO2光催化吸附协同脱硫工艺可有效解决吸附脱硫工艺中芳烃竞争吸附导致吸附脱硫选择性低的问题;在模拟油品中添加质量分数为25%的甲苯,反应7 h后油品脱硫率仍高达96.6%。TiO2-CeO2对不同硫化物的光催化吸附协同脱硫效果顺序为:4,6-DMDBT> DBT> BT。TiO2-CeO2经四次再生循环使用后,脱硫率没有明显降低。
  • 图  1  光催化氧化吸附脱硫工艺装置示意图

    Figure  1  Schematic diagram of the synergistic photocatalysis-adsorption desulfurization system

    1: magnetic stirrer; 2: model disel fuel; 3: water bath; 4: air inlet; 5: UV reflector; 6: stirrer bar; 7: sampling port; 8: xenon lamp

    图  2  TixCe(1-x)O2材料的XRD谱图

    Figure  2  XRD patterns of TixCe(1-x)O2-500 with various Ti/Ce molar ratio (a) and Ti0.9Ce0.1O2 calcined at differents temperatures (b)

    图  3  模拟柴油在不同脱硫条件的GC

    Figure  3  SCD chromatograms of model fuels treated at different desulfurization conditions

    (a): initial model diesel fuel (50 μg·g-1S); (b): Ti0.9Ce0.1O2-500, dark (29.4 μg·g-1S); (c): No Ti0.9Ce0.1O2-500, UV irradiation 1 h (50 μg·g-1S); (d): Ti0.9Ce0.1O2-500, UV irradiation 1 h (10.8 μg·g-1S); (e): Ti0.9Ce0.1O2-500, UV irradiation 3 h (2.1 μg·g-1S); (f): Ti0.9Ce0.1O2-500, UV irradiation 5 h (0.2 μg·g-1S)

    图  4  反应后催化剂洗脱液的气相色谱谱图

    Figure  4  MS chromatogram of the eluent from the spend Ti0.9Ce0.1O2-500 catalyst

    图  5  图 4中保留时间分别23.0 min和23.4 min对应物质以及二苯并噻吩亚砜 (DBTO) 和二苯并噻吩砜 (DBTO2) 的质谱图

    Figure  5  Mass spectra of species at the retention time of 23.0 min (a) and 23.4 min (b) in Figure 4; standard mass spectra of DBTO (c) and DBTO2 (d)

    图  6  TiO2-CeO2材料光催化吸附协同脱硫示意图

    Figure  6  Schematic diagram of synergitic photocatalysis-adsorption desulfurization of model fuel over TiO2-CeO2

    图  7  TixCe(1-x)O2-500中Ti/Ce物质的量比对其光催化吸附协同脱硫性能的影响

    Figure  7  Effect of Ti/Ce molar ratio in TixCe(1-x)O2-500 on its synergistic photocatalysis-adsorption desulfurization performance

    ●: Ti0.9Ce0.1O2-500; ▼: Ti0.5Ce0.5O2-500; ▶: Ti0.1Ce0.9O2-500; ■: TiO2-500; ▲: Ti0.7Ce0.3O2-500; ◀: Ti0.3Ce0.7O2-500; ◆: CeO2-500

    图  8  煅烧温度对Ti0.9Ce0.1O2光催化吸附协同脱硫性能的影响

    Figure  8  Effect of the calcination temperature on the synergistic photocatalysis-adsorption desulfurization performance of Ti0.9Ce0.1O2

    图  9  Ti0.9Ce0.1O2-500对油品中不同硫化物的光催化吸附协同脱硫性能的影响

    Figure  9  Synergistic photocatalysis-adsorption performance of Ti0.9Ce0.1O2-500 for various organosulfur compounds in diesel

    图  10  柴油中甲苯对Ti0.9Ce0.1O2-500光催化吸附协同脱硫性能的影响

    Figure  10  Effect of toluene in diesel on the desulfurization performance of Ti0.9Ce0.1O2-500

    图  11  Ti0.9Ce0.1O2-500的再生循环脱硫性能

    Figure  11  Recycling tests of Ti0.9Ce0.1O2-500 for synergistic photocatalysis-adsorption desulfurization of model diesel fuel

    表  1  TixCe(1-x)O2材料的孔结构参数

    Table  1  Textural properties of various TixCe(1-x)O2 materials

    Sample BET surface area
    A/(m2·g-1)
    Average pore size
    d/nm
    Total pore volume
    v/(cm3·g-1)
    TiO2-500 98.6 7.08 0.234 9
    Ti0.9Ce0.1O2-500 159.4 10.83 0.553 1
    Ti0.7Ce0.3O2-500 193.5 4.36 0.300 4
    Ti0.5Ce0.5O2-500 126.4 5.71 0.242 2
    Ti0.3Ce0.7O2-500 145.7 4.62 0.227 2
    Ti0.1Ce0.9O2-500 132.6 3.88 0.169 1
    CeO2-500 105.3 3.93 0.120 8
    Ti0.9Ce0.1O2-400 251.8 8.41 0.422 0
    Ti0.9Ce0.1O2-600 58.9 21.09 0.378 8
    下载: 导出CSV
  • [1] SONG C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003, 86(1/4): 211-263.
    [2] 宋红艳, 何静, 李春喜. 燃料油深度脱硫的技术策略及研究进展[J]. 石油化工, 2015, 44(3): 279-286. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201503003.htm

    SONG Hong-yan, HE Jing, LI Chun-xi. Technical strategies and recent advances for deep desulfurization of fuel oils[J]. Petrochem Technol, 2015, 44(3): 279-286. http://www.cnki.com.cn/Article/CJFDTOTAL-SYHG201503003.htm
    [3] 李文秀, 崔安磊, 范俊刚, 孙向乐, 张志刚. 载铜球形活性炭的制备及其吸附脱硫性能的研究[J]. 燃料化学学报, 2013, 41(5): 613-618. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18186.shtml

    LI Wen-xiu, CUI An-lei, FAN Jun-gang, SUN Xiang-le, ZHANG Zhi-gang. Synthesis of spherical activated carbon supported copper catalyst and its performance for adsorptive desulfurization[J]. J Fuel Chem Technol, 2013, 41(5): 613-618. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18186.shtml
    [4] 王晓静, 刘超, 董悦, 李发堂, 赵君, 李玉佩. 四氟硼酸改性活性炭的制备及其吸附脱除二苯并噻吩性能[J]. 燃料化学学报, 2015, 43(5): 607-613. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18630.shtml

    WANG Xiao-jing, LIU Chao, DONG Yue, LI Fa-tang, ZHAO Jun, LI Yu-pei. Modification of activated carbon with tetrafluoroboric acid and its performance in adsorption desulfurization of dibenzothiophene[J]. J Fuel Chem Technol, 2015, 43(5): 607-613. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18630.shtml
    [5] SUN H Y, SUN L P, LI F, ZHANG L. Adsorption of benzothiophene from fuels on modified NaY zeolites[J]. Fuel Process Technol, 2015,134: 284-289. doi: 10.1016/j.fuproc.2015.02.010
    [6] 宋丽娟, 胡月婷, 秦玉才, 于文广, 张晓彤. NiY分子筛表面酸性影响其选择性吸附脱硫性能的机理研究[J]. 燃料化学学报, 2016, 44(9): 1082-1088. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18896.shtml

    SONG Li-juan, HU Yue-ting, QIN Yu-cai, YU Wen-guang, ZHANG Xiao-tong. Mechanism of effects of surface acidity on performance of adsorption desulfurization of NiY zeolites[J]. J Fuel Chem Technol, 2016, 44(9): 1082-1088. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18896.shtml
    [7] WU L M, XIAO J, WU Y, XIAN S K, MIAO G, WANG H H, LI Z. A combined experimental/computational study on the adsorption of organosulfur compounds over metal-organic frameworks from fuels[J]. Langmuir, 2014, 30(4): 1080-1088. doi: 10.1021/la404540j
    [8] QIN L, SHI W P, LIU W F, YANG Y Z, LIU X G, XU B S. Surface molecularly imprinted polymers grafted on ordered mesoporous carbon nanospheres for fuel desulfurization[J]. Rsc Adv, 2016, 6(15): 12504-12513. doi: 10.1039/C5RA23582K
    [9] 胡廷平, 张宴铭, 郑立辉, 范国枝. 硅胶表面苯并噻吩分子印迹聚合物的分子识别与吸附性能[J]. 燃料化学学报, 2010, 38(6): 722-729. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17658.shtml

    HU Ting-ping, ZHANG Yan-ming, ZHENG Li-hui, FAN Guo-zhi. Molecular recognition and adsorption performance of benzothiophene imprinted polymer on silica gel surface[J]. J Fuel Chem Technol, 2010, 38(6): 722-729. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17658.shtml
    [10] 张伟, 李鑫, 童靖予, 胡雨, 李翠清. 吸附法燃油超深度脱硫的研究进展[J]. 石油化工, 2016, 45(11): 1396-1402. doi: 10.3969/j.issn.1000-8144.2016.11.019

    ZHANG Wei, LI Xin, TONG Jing-yu, HU Yu, LI Cui-qing. Progresses in ultra-deep desulfurization of fuel oil through adsorption[J]. Petrochem Technol, 2016, 45(11): 1396-1402. doi: 10.3969/j.issn.1000-8144.2016.11.019
    [11] BHANDARI V M, HYUN KO C, GEUN PARK J, HAN S S, CHO S H, KIM J N. Desulfurization of diesel using ion-exchanged zeolites[J]. Chem Eng Sci, 2006, 61(8): 2599-2608. doi: 10.1016/j.ces.2005.11.015
    [12] KOBAYASHI M, FLYTZANI-STEPHANOPOULOS M. Reduction and sulfidation kinetics of cerium oxide and Cu-modified cerium oxide[J]. Ind Eng Chem Res, 2002, 41(13): 3115-3123. doi: 10.1021/ie010815w
    [13] ZHANG W, LIU H Y, XIA Q B, LI Z. Enhancement of dibenzothiophene adsorption on activated carbons by surface modification using low temperature oxygen plasma[J]. Chem Eng J, 2012, 209: 597-600. doi: 10.1016/j.cej.2012.08.050
    [14] MA X, SPRAGUE M, SONG C. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications[J]. Ind Eng Chem Res, 2005, 44(15): 5768-5775. doi: 10.1021/ie0492810
    [15] OTSUKI S, NONAKA T, TAKASHIMA N, QIAN W H, ISHIHARA A, IMAI T, KABE T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000, 14(6): 1232-1239. doi: 10.1021/ef000096i
    [16] XIAO J, SONG C S, MA X L, LIT Z. Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon[J]. Ind Eng Chem Res, 2012, 51(8): 3436-3443. doi: 10.1021/ie202440t
    [17] WANG L F, SUN B D, YANG F H, YANG R T. Effects of aromatics on desulfurization of liquid fuel by π-complexation and carbon adsorbents[J]. Chem Eng Sci, 2012, 73: 208-217. doi: 10.1016/j.ces.2012.01.056
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  35
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-21
  • 修回日期:  2017-03-08
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-05-10

目录

    /

    返回文章
    返回