留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同煤燃烧过程颗粒汞生成特性的实验研究

高正阳 殷立宝 周黎明 钟俊 郑双清

高正阳, 殷立宝, 周黎明, 钟俊, 郑双清. 不同煤燃烧过程颗粒汞生成特性的实验研究[J]. 燃料化学学报(中英文), 2012, 40(09): 1135-1141.
引用本文: 高正阳, 殷立宝, 周黎明, 钟俊, 郑双清. 不同煤燃烧过程颗粒汞生成特性的实验研究[J]. 燃料化学学报(中英文), 2012, 40(09): 1135-1141.
GAO Zheng-yang, YIN Li-bao, ZHOU Li-ming, ZHONG Jun, ZHENG Shuang-qing. Formation characteristics of Hg particulates during combustion of different coals[J]. Journal of Fuel Chemistry and Technology, 2012, 40(09): 1135-1141.
Citation: GAO Zheng-yang, YIN Li-bao, ZHOU Li-ming, ZHONG Jun, ZHENG Shuang-qing. Formation characteristics of Hg particulates during combustion of different coals[J]. Journal of Fuel Chemistry and Technology, 2012, 40(09): 1135-1141.

不同煤燃烧过程颗粒汞生成特性的实验研究

基金项目: 教育部留学回国人员科研启动基金; 华北电力大学校内科研基金(200913003)。
详细信息
    通讯作者:

    高正阳(1972-),男,河北安平人,副教授,博士,从事煤中有害痕量元素迁移规律与控制方法研究,Tel:13903226830;Email:gaozhyan@163.com。

  • 中图分类号: X511

Formation characteristics of Hg particulates during combustion of different coals

  • 摘要: 在高温管式电加热炉上进行了三种煤单独燃烧,三种煤添加1%、3%、5%溴化钙与醋酸钙燃烧,以及一种煤添加Fe2O3燃烧实验,燃烧温度为1 250℃。收集了各燃烧过程的飞灰,对收集的飞灰进行了Hg含量测定,并对飞灰进行了比表面积、EDS与XRD表征。实验与分析结果表明,三种煤燃烧后Hgp的生成特性显著不同;三号煤灰的比表面积最大但飞灰颗粒Hg含量及Hgp比率均很低;在添加CaBr2后,三种煤飞灰颗粒Hg含量及Hgp比率均显著增加;在三种煤中添加醋酸钙,及在三号煤中添加Fe2O3后,Hgp含量与比率有所增加,但增加幅度较小。
  • SRIVASTAVA R, HUTSON N, MARTIN B, PRINCIOTTA F, STAUDT J. Control of mercury emissions from coal-fired electric utility boilers: An overview of the status of mercury control technologies[J]. Environ Sci Technol, 2006, 40(5): 1385-1393.
    YUDOVICH Y E, KETRIS M P. Mercury in coal: A review Part 2. Coal use and environmental problem[J]. Int J Coal Geol, 2005, 62(3): 135-165.
    PAVLISH J H, SONDREAL E A, MANN M D, OLSON E S, GALBREATH K C, LAUDAL D L, BENSON S A. Status review of mercury control options for coal-fired power plant[J]. Fuel Process Technol, 2003, 82(2/3): 89-165.
    WILCOX J, RUPP E, YING S-C, LIM D-H, NEGREIRA A S, KIRCHOFER A, FENG F, LEE K. Mercury adsorption and oxidation in coal combustion and gasification processes[J].Int J Coal Geol, 2012, 90/91: 4-20.
    PUDASAINEE D, KIM J-H, YOON Y-S, SEO Y-C. Oxidation, reemission and mass distribution of mercury in bituminous coal fired power plants with SCR, CS ESP and wet FGD[J]. Fuel, 2012, 93(3): 312-318.
    ABAD-VALLE P, LOPEZ-ANTON M A,DIAZ-SOMOANO M, MARTINEZ-TARAZONA M R.The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury[J]. Chem Eng J, 2011, 174(1): 86-92.
    PAVLISH J H, HAMRE L L, ZHUANG Y. Mercury control technologies for coal combustion and gasification systems[J]. Fuel, 2010, 89(4): 838-847.
    ANTONIA LPEZ-ANTN M, ABAD-VALLE P, DAZ-SOMOANO M, SUREZ-RUIZ I, ROSA MARTNEZ-TARAZONA M. The influence of carbon particle type in fly ashes on mercury adsorption[J]. Fuel, 2009, 88(7): 1194-1200.
    KOSTOVA I J, HOWER J C, MASTALERZ M, VASSILEV S V. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency[J]. Appl Geochem, 2011, 26(1): 18-27.
    HUGHES K J, MA L, PORTER R T J, POURKASHANIAN M. Mercury transformation modelling with bromine addition in coal derived flue gases[J]. Comp Aided Chem Eng, 2011, 29(1): 171-175.
    ZHUANG Y, CHEN C, TIMPE R, PAVLISH J. Investigations on bromine corrosion associated with mercury control technologies in coal flue gas[J]. Fuel, 2009, 88(9):1692-1697.
    LIU S-H, YAN N-Q, LIU Z-R, QU Z, PAUL WANG H, CHANG S-G, MILLER C. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants. [J]. Environ Sci Technol,2007, 41(4): 1405-1412.
    YAN N-Q, LIU S-H, CHANG S-G. Method for the study of gaseous oxidants for the oxidation of mercury gas[J]. Ind Eng Chem Res, 2005, 44(15): 5567-5574.
    NIMMO W, PATSIAS A A, HAMPARTSOUMIAN E, GIBBS B M, WILLIAMS P T. Simultaneous reduction of NOx and SO2 emissions from coal combustion by calcium magnesium acetate[J]. Fuel, 2004, 83(2): 149-155.
    SLIGER R N, KRAMLICH J C, MARINOV N M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J]. Fuel Process Technol, 2000, 65-66: 423-438.
    HALL B, LINDQVIST O, LJUNGSTROEM E. Mercury chemistry in simulated flue gases related to waste incineration conditions[J]. Environ Sci Technol, 1990, 24(1): 108-111.
    ZHUANG Y, THOMPSON J S, ZYGARLICKE C J, PAVLISH J H. Impact of calcium chloride addition on mercury transformations and control in coal flue gas[J]. Fuel, 2007, 84(15): 2351-2359.
    XIN G, ZHAO P, ZHENG C.Theoretical study of different speciation of mercury adsorption on CaO (001) surface[J]. Proc Combust Inst, 2009, 32(2): 2693-2699.
    PAVLISH J H, SONDREAL E A, MANN1 M D, OLSON E S,GALBREATH K C, LAUDAL D L, BENSON S A. Status review of mercury control options for coal-fired power plants[J]. Fuel Process Technol, 2003, 82(2/3): 89-165.
    SUBIR M, ARIYA P A, DASTOOR A P. A review of uncertainties in atmospheric modeling of mercury chemistry:I Uncertainties in existing kinetic parameters-Fundamental limitations and the importance of heterogeneous chemistry[J]. Atmos Eviron, 2011, 45(32): 5664-5676.
    GALBREATH K C, ZYGARLICKE C J, TIBBETTS J E, SCHULZ R L, DUNHAM G E. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system[J]. Fuel Process Technol, 2004, 86(4): 429-448.
  • 加载中
计量
  • 文章访问数:  1949
  • HTML全文浏览量:  10
  • PDF下载量:  629
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-23
  • 修回日期:  2012-03-23
  • 刊出日期:  2012-09-29

目录

    /

    返回文章
    返回