留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于油藏实际的稠油层内水热催化裂解机理研究

许洪星 蒲春生 吴飞鹏

许洪星, 蒲春生, 吴飞鹏. 基于油藏实际的稠油层内水热催化裂解机理研究[J]. 燃料化学学报(中英文), 2012, 40(10): 1206-1211.
引用本文: 许洪星, 蒲春生, 吴飞鹏. 基于油藏实际的稠油层内水热催化裂解机理研究[J]. 燃料化学学报(中英文), 2012, 40(10): 1206-1211.
XU Hong-xing, PU Chun-sheng, WU Fei-peng. Mechanism of underground heavy oil catalytic aquathermolysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1206-1211.
Citation: XU Hong-xing, PU Chun-sheng, WU Fei-peng. Mechanism of underground heavy oil catalytic aquathermolysis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1206-1211.

基于油藏实际的稠油层内水热催化裂解机理研究

基金项目: 国家自然科学基金(51104173, 51274229); 国家科技重大专项 (2011ZX05009-004); 山东省自然科学基金 (ZR2010EM014)。
详细信息
    通讯作者:

    许洪星(1983-),男,山东聊城人,博士生,主要从事复杂油气藏物理化学强化开采理论与技术方面的科研工作。E-mail:xuhongxing390124@163.com。

  • 中图分类号: TE345

Mechanism of underground heavy oil catalytic aquathermolysis

  • 摘要: 开展了稠油层内水热催化裂解技术在胜利油田的先导实验,五口井平均周期单井增油653 t,稠油初期降黏率达79.8%,措施14周后降黏率仍大于62%。利用Brookfield DV-Ⅲ黏度计、ElementarVario EL III元素分析仪、Knauer K-700蒸气压渗透仪、Agilent 6890N气相色谱仪和EQUINOX 55傅里叶变换红外光谱仪等,对措施前后稠油的物化性质进行分析。结果表明,层内水热催化裂解后稠油黏度及平均分子量减小、轻烃含量增加、重质组分含量减少、氢碳原子比增加、杂原子含量减小。稠油层内裂解反应受催化剂体系、高温水及储层矿物因素控制,催化剂是促进稠油裂解的主要因素,供氢剂及分散剂等助剂有助于提高裂解效果,高温水的酸碱性质及储层矿物对稠油具有催化裂解作用。多因素协同作用下使稠油发生脱侧链、分子链异构、断链、加氢、开环、成环、脱硫等系列反应,使得稠油大分子分解成小分子物质,降低了稠油黏度,改善了稠油品质,证实该技术在现场应用中具有可行性。
  • 许洪星, 蒲春生. 超声波辅助稠油层内催化水热裂解实验研究 [J]. 燃料化学学报, 2011, 39(8): 606-610. (XU Hong-xing, PU Chun-sheng. Experimental study of heavy oil underground aquathermolysis using catalyst and ultrasonic [J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 606-610.
    HYNE J B, GREIDANUS J W, TYRER J D. Aquathermolysis of heavy oil [C]//Proceedings of the 2nd international conference on heavy crude and tar sands. Caracas, Venezuela: 1982: 25-30.
    RICHARD P D, WILLIAM C M, MURRAY R G. Thermal cracking of Athabasca bitumen: Influence of steam on reaction chemistry [J]. Energy Fuels, 2000, 14(2): 671-676.
    RIVAS O R, CAMPOS R E, BORGES L G. Experimental evaluation of transition metals salt solutions as additives in steam recovery processes [J]. SPE 18076, 1988.
    CLARK P D, HYNE J B, TYRER J D. Chemistry of organosulfur compound type occurring in heavy oil sands: 3 Reaction of thiophene and tetrahydro-thiophene with vanadyl and nickel salts [J]. Fuel, 1984, 63(7): 1649-1655.
    CLARK P D, CLARKE R A, HYNE J B. Studies on the effect of metal species on oil sands undergoing steam treatments [J]. AOSTRA J Res, 1990, 6(1): 53-64.
    BRUCE P P, ALFRED G C. Iron-based ionic liquid catalysts for hydro-processing carbonaceous feeds: UP, 6139723. 2000-10-31.
    刘永建, 钟立国, 范洪富, 刘喜林. 稠油的水热裂解反应及其降黏机理 [J]. 大庆石油学院学报, 2002, 26(3): 95-99. (LIU Yong-jian, ZHONG Li-guo, FAN Hong-fu, LIU Xi-lin. Study on the aquathermolysis and viscosity reduced mechanism of heavy oil [J]. Journal of Daqing Petroleum Institute, 2002, 26(3): 95-99.)
    CHEN Y, WANG Y, WU C. Laboratory experiments and field tests of an amphiphilic metallic chelate for catalytic aquathermolysis of heavy oil [J]. Energy Fuels, 2008, 22(3): 1501-1508.
    CHEN Y, WANG Y, LU J, WU C. The viscosity reduction of nano-keggin-K3PMo12O40 in catalytic aquathermolysis of heavy oil [J]. Fuel, 2009, 88(8): 1426-1434.
    樊泽霞, 赵福麟, 王杰祥, 巩永刚. 超稠油供氢水热裂解改质降黏研究 [J]. 燃料化学学报, 2006, 34(3): 315-318. (FAN Ze-xia, ZHAO Fu-lin, WANG Jie-xiang, GONG Yong-gang. Upgrading and viscosity reduction of super heavy oil by aquathermolysis with hydrogen donor [J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 315-318.)
    宋向华, 蒲春生, 刘洋. 井下乳化/水热催化裂解复合降黏开采稠油技术研究 [J]. 油田化学, 2006, 23(2): 153-157. (SONG Xiang-hua, PU Chun-sheng, LIU Yang. A study on heavy oil recovery by in-situ emulsification/catalytic aquathermolysis [J]. Oilfield Chemistry, 2006, 23(2): 153-157.)
    范洪富, 刘永建, 赵晓非, 钟立国. 国内首例井下水热裂解催化降黏开采稠油现场试验 [J]. 石油钻采工艺, 2001, 23(3): 42-45. (FAN Hong-fu, LIU Yong-jian, ZHAO Xiao-fei, ZHONG Li-guo. First field experimental of recovery heavy oil using down-hole catalytic method in China [J]. Oil Drilling & Production Technology, 2001, 23(3): 42-45.)
    吴川, 雷光伦, 姚传进, 盖平原. 双亲催化剂作用超稠油水热裂解降黏机理研究 [J]. 燃料化学学报, 2010, 38(6): 684-690. (WU Chuan, LEI Guang-Lun, YAO Chuan-jin, GAI Ping-yuan. Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysiswith an amphiphilic catalyst [J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 684-690.)
    CLARK P D, HYNE J B, TYRER J D. Chemistry of organosulfur compound type occurring in heavy oil sands: 1 High temperature hydrolysis and thermolysis of tetrahydrothiophene in relation to steam stimulation processes [J]. Fuel, 1983, 62(5): 959-962.
    Van OLPHEN H. An introduction to clay colloid chemistry for clay technologist, geologist and soil scientist [M]. New York: A Wiley-Interscience Publication, 1977: 57-64.
  • 加载中
计量
  • 文章访问数:  2472
  • HTML全文浏览量:  36
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-14
  • 修回日期:  2012-03-19
  • 刊出日期:  2012-10-31

目录

    /

    返回文章
    返回