留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对二甲醚水蒸气重整制氢 Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5双功能催化剂性能的影响

李娟 海航 闫常峰 胡蓉蓉 么志伟 罗伟民 郭常青 李文博

李娟, 海航, 闫常峰, 胡蓉蓉, 么志伟, 罗伟民, 郭常青, 李文博. 焙烧温度对二甲醚水蒸气重整制氢 Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5双功能催化剂性能的影响[J]. 燃料化学学报(中英文), 2012, 40(10): 1240-1245.
引用本文: 李娟, 海航, 闫常峰, 胡蓉蓉, 么志伟, 罗伟民, 郭常青, 李文博. 焙烧温度对二甲醚水蒸气重整制氢 Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5双功能催化剂性能的影响[J]. 燃料化学学报(中英文), 2012, 40(10): 1240-1245.
LI Juan, HAI Hang, YAN Chang-feng, HU Rong-rong, YAO Zhi-wei, LUO Wei-min, GUO Chang-qing, LI Wen-bo. Effect of calcination temperature on properties of Cu/ZnO/Al2O3/ Cr2O3+H-ZSM-5 bi-functional catalysts for steam reforming of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1240-1245.
Citation: LI Juan, HAI Hang, YAN Chang-feng, HU Rong-rong, YAO Zhi-wei, LUO Wei-min, GUO Chang-qing, LI Wen-bo. Effect of calcination temperature on properties of Cu/ZnO/Al2O3/ Cr2O3+H-ZSM-5 bi-functional catalysts for steam reforming of dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2012, 40(10): 1240-1245.

焙烧温度对二甲醚水蒸气重整制氢 Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5双功能催化剂性能的影响

基金项目: 国家自然科学基金(20806082, 50306026); 广东省自然科学基金(10151007006000016)。
详细信息
    通讯作者:

    闫常峰,yancf@ms.giec.ac.cn,Tel:020-87057729。

  • 中图分类号: TQ032

Effect of calcination temperature on properties of Cu/ZnO/Al2O3/ Cr2O3+H-ZSM-5 bi-functional catalysts for steam reforming of dimethyl ether

  • 摘要: 采用共沉淀耦合机械混合法制备了Cu/ZnO/Al2O3/Cr2O3+H-ZSM-5双功能催化剂,并用于二甲醚水蒸气重整制氢反应,结合热重、傅里叶红外光谱、XRD、BET、H2-TPR表征,考察了焙烧温度对Cu/ZnO/Al2O3/Cr2O3催化剂物理化学性质及双功能催化剂催化性能的影响。研究结果表明,400℃焙烧时,析出CuO粒子的同时伴有尖晶石相,进而在反应过程中对金属铜粒子起到良好的隔离作用。而焙烧温度较低时,催化剂分解不完全,催化剂活性位较少。焙烧温度大于500℃时,CuO粒子发生二次团聚,同时尖晶石相大量生成,造成催化剂活性位减少,活性较低。合适的焙烧温度为400℃,此时二甲醚转化率为92.9%,氢气收率可达到76.5%,具有较好的反应效果。
  • DELUGA G A, SALGE J R, SCHMIDT L D, VERYKIO X E. Renewable hydrogen from ethanol by autothermal reforming[J]. Science, 2004, 303(5660): 993-997.
    WINTER C J. Hydrogen energy- abundant, efficient, clean: A debate over the energy-system-of-change[J]. Int J Hydrogen Energy, 2009, 34(14): s1-s52.
    ARCOUMANIS C, BAE C, CROOKES R, KINOSHITA E. The potential of dimethyl ether (DME) as an alternative fuel for compression-ignition engines: A review[J]. Fuel, 2008, 87(7): 1014-1030.
    ALEXEY S, CHAN K. Progress in development of direct dimethyl ether fuel cells [J]. Appl Catal B, 2009, 91(1/2): 1-10.
    左宜赞, 张强, 安欣, 韩明汉, 王铁锋, 王金福, 金涌. 浆态床中Cu/ZnO/Al2O3/ZrO2 +γ-Al2O3 双功能催化剂一步法合成二甲醚 [J]. 燃料化学学报, 2010, 38(1): 102-107. (ZUO Yi-zan, ZHANG Qiang, AN Xin, HAN Ming-han, WANG Tie-feng, WANG Jin-fu, JIN Yong. Single-step dimethyl ether synthesison a Cu/ZnO/Al2O3/ZrO2 +γ-Al2O3 bifunctional catalyst in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 102-107.)
    钱伯章. 二甲醚的技术进展与市场分析 [J]. 石油与天然气化工, 2004, 33(5): 324-332. (QIAN Bo-zhang. Technology progress and market analysis of dimethyl ether [J]. Chemical Engineering of Oil & Gas, 2004, 33(5): 324-332.)
    SEMELSBERGER T A, BORUP R L, GREENE H L. Dimethyl ether (DME) as an alternative fuel[J]. J Power Sources, 2006, 156(2): 497-511.
    李超, 李琢, 李建青, 杨成, 吴晋沪. 一步法合成二甲醚整体式催化剂的制备及反应性能研究[J]. 燃料化学学报, 2011, 39(4): 287-292. (LI Chao, LI Zhuo, LI Jian-qing, YANG Cheng, WU Jin-hu. Preparation and catalytic properties of a monolithic catalyst for one step synthesis of dimethyl ether [J]. Journal of Fuel Chemistry and Technology, 2011, 39(4): 287-292.)
    TOMOAKI M, TOSHIVA N, HIROVOSHI K, KAZUNORI U, YASUVUKI M, SEIICHIRO I. Steam reforming of dimethyl ether over H-mordenite-Cu/CeO2 catalysts[J]. Appl Catal A, 2006, 276(1/2): 267-273.
    SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Role of acidity on the hydrolysis of dimethyl ether (DME) to methanol [J]. Appl Catal B, 2005, 61(3/4): 281-287.
    FAUNGNAWAKIJ K, TANAKA Y, SHIMODA N. Influence of solid-acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production [J]. Appl Catal A, 2006, 304(1): 40-48.
    冯冬梅, 王金福, 王德峥. 二甲醚水蒸气重整制氢催化剂的研究[J]. 中国科技论文在线, 2007, 2(8): 567-571. (FENG Dong-mei, WANG Jin-fu, WANG De-zheng. Production of hydrogen from dimethyl ether over catalysts[J]. Sciencepaper Online, 2007, 2(8): 567-571.)
    FUKUNAGA T, RYUMON N, SHIMAZU S. The influence of metals and acidic oxide species on the steam reforming of dimethyl ether (DME)[J]. Appl Catal A, 2008, 348(2): 193-200.
    LEDESMA C, OZKAN U S, LIORCA J. Hydrogen production by steam reforming of dimethyl ether over Pd-based catalytic monoliths [J]. Appl Catal B, 2011, 101(3/4): 690-697.
    WANG X, PAN X, LIN R, KOU S, ZOU W, MA J. Steam reforming of dimethyl ether over Cu-Ni/γ-Al2O3 bi-functional catalyst prepared by deposition-precipitation method[J]. Int J Hydrogen Energy, 2010, 35(9): 4060-4068.
    FENG D, ZUO Y, WANG D, WANG J. Steam reforming of dimethyl ether over coupled catalysts of CuO-ZnO-Al2O3-ZrO2 and solid-acid catalyst[J]. Chin J Chem Eng, 2009, 17(1): 64-71.
    FENG D, ZUO Y, WANG D, WANG J. steam reforming of dimethyl ether over coupled zsm-5 and cu-zn-based catalysts [J]. Chin J Catal, 2009, 30(3): 223-229.
    SHIMODA N, MUROYAMA H, MATSUI T, FAUNGNAWAKIJ K, KIKUCHI R, EGUCHI K. Dimethyl ether steam reforming under daily start-up and shut-down (DSS)-like operation over CuFe2O4 spinel and alumina composite catalysts [J]. Appl Catal A, 2011, 409: 91-98.
    KUDO S, MAKI T, MIURA K, MAE K. High porous carbon with Cu/ZnO nanoparticles made by the pyrolysis of carbon material as a catalyst for steam reforming of methanol and dimethyl ether[J]. Carbon, 2010, 48(4): 1186-1195.
    SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Generating hydrogen-rich fuel-cell feeds from dimethyl ether(DME) using Cu/Zn supported on various solid-acid substrates[J]. Appl Catal A, 2006, 309(2): 210-223.
    SEMELSBERGER T A, OTT K C, BORUP R L, GREENE H L. Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using physical mixtures of a commercial Cu/Zn/Al2O3 catalyst and several solid-acid catalysts[J]. Appl Catal B, 2006, 65(3/4): 291-300.
    KAWABATA T, MATSUOKA H, SHISHIDO T, LI D, TIAN Y, SANO T, TAKEHIRA K. Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation[J]. Appl Catal A, 2006, 308: 82-90.
    李吉刚, 孙杰, 张立功, 程玉龙, 邱新平, 陈立泉. 花状微球NiO/CeO2催化剂上乙醇水蒸气重整制氢研究[J]. 燃料化学学报, 2010, 38(3): 332-336. (LI Ji-gang, SUN Jie, ZHANG Li-gong, CHENG Yu-long, QIU Xin-ping, CHEN Li-quan. Hydrogen production by steam reforming of ethanol over flower like microspheres Ni/CeO2 catalyst[J]. Journal of Fuel Chemistry and Technology, 2010, 38(3): 332-336.)
    MORPURGO S, LO JACONO M, PORTA P. Copper-zinc-cobalt-aluminum-chromium hydroxycarbonates and mixed oxides[J]. J Solid State Chem, 1996, 122(2): 324-332.
    TURCO M, BAGNASCO G, COSTANTINO U, MARMOTTINI F, MONTANARI T, RAMIS G, BUSCA G. Production of hydrogen from oxidative steam reforming of methanol: II Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts[J]. J Catal, 2004, 228(1): 56-65.
    MELIAN C I, GRANADOS M L, FIERRO J L G. Thermal decomposition of a hydrotalcite-containing Cu-Zn-Al precursor: Thermal methods combined with an in situ DRIFT study[J]. Phys Chem Chem Phys, 2002, 4(13): 3122-3127.
    KANNAN S, RIVES V, KNOZINGER H. High-temperature transformations of Cu-rich hydrotalcites[J]. J Solid State Chem, 2004, 177(1): 319-331.
    SHEN G-C, FUJITA S-I, MATSUMOTO S, TAKEZAWA N. Steam reforming of methanol on binary Cu/ZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity[J]. J Mol Catal A, 1997, 124(2/3): 123-136.
    FUJITANI T, NAKAMURA J. The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity[J]. Catal Lett, 1998, 56(2/3): 119-124.
  • 加载中
计量
  • 文章访问数:  2139
  • HTML全文浏览量:  26
  • PDF下载量:  739
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-20
  • 修回日期:  2012-05-04
  • 刊出日期:  2012-10-31

目录

    /

    返回文章
    返回