留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化硅孔结构对CO氧化用担载型纳米金催化剂的影响

徐慧远 罗靖洁 严春蓉 张燕 尚书勇

徐慧远, 罗靖洁, 严春蓉, 张燕, 尚书勇. 二氧化硅孔结构对CO氧化用担载型纳米金催化剂的影响[J]. 燃料化学学报(中英文), 2012, 40(11): 1397-1402.
引用本文: 徐慧远, 罗靖洁, 严春蓉, 张燕, 尚书勇. 二氧化硅孔结构对CO氧化用担载型纳米金催化剂的影响[J]. 燃料化学学报(中英文), 2012, 40(11): 1397-1402.
XU Hui-yuan, LUO Jing-jie, YAN Chun-rong, ZHANG Yan, SHANG Shu-yong. Impact of silica porosity on the catalytic activity of nanosize gold catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1397-1402.
Citation: XU Hui-yuan, LUO Jing-jie, YAN Chun-rong, ZHANG Yan, SHANG Shu-yong. Impact of silica porosity on the catalytic activity of nanosize gold catalyst for CO oxidation[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11): 1397-1402.

二氧化硅孔结构对CO氧化用担载型纳米金催化剂的影响

基金项目: 宜宾学院博士科研启动基金(2010B12)。
详细信息
    通讯作者:

    徐慧远(1984-),博士;Tel:0831-3532199;E-mail:xuhuiyuan@yahoo.cn;主要从事多相催化研究。

  • 中图分类号: O643.36

Impact of silica porosity on the catalytic activity of nanosize gold catalyst for CO oxidation

  • 摘要: 采用三种不同孔结构的二氧化硅材料为载体,应用沉积沉淀法制备担载型纳米金催化剂。以CO催化氧化为模型反应,并结合低温N2吸附脱附、X射线物相分析、X射线光电子能谱和透射电镜等技术考察三种二氧化硅载体对纳米金催化剂结构和性能的影响。结果表明,催化剂中金纳米颗粒与载体孔结构呈现出良好的对应关系,比表面积大、孔径小且分布均匀的二氧化硅制备的金催化剂颗粒粒径最小,CO氧化活性最高。在18 000 mL/(h·gcat)、v(CO)/v(O2)/v(Ar)=1/21/78的反应条件下,其CO完全转化温度为560 K。
  • XIE X-W, LI Y, LIU Z-Q, HARUTA M, SHEN W-J.Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J].Nature, 2009, 458(7239): 746-749.
    CAO J-L, WANG Y, YU X-L, WANG S-R, WU S-H, YUAN Z-Y.Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation[J].Appl Catal B, 2008, 79(1): 26-34.
    OH S-H, HOFLUND G B.Low-temperature catalytic carbon monoxide oxidation over hydrous and anhydrous palladiumoxide powders [J].J Catal, 2007, 245(1): 35-44.
    王桂英, 廉红蕾, 周文辉, 张文祥, 蒋大振, 吴通好. 氯离子含量对Au/ZnO 催化剂常温CO 氧化性能的影响[J]. 燃料化学学报, 2001, 29(8): 116-118. (WANG Gui-ying, LIAN Hong-lei, ZHOU Wen-hui, ZHANG Wen-xiang, JIANG Da-zhen, WU Tong-hao. Effect of Cl on the performance of CO oxidation over Au/ZnO catalysts[J]. Journal of Fuel Chemistry and Technology, 2001, 29(8): 116-118.)
    HARUTA M, YAMADA N, KOBAYASHI T, IIJIMA S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal, 1989, 115(2): 301-309.
    XU H-Y, LI W-Y, SHANG S-Y, YAN C-R. Influence of MgO contents on silica supported nano-size gold catalyst for carbon monoxide total oxidation [J]. J Nat Gas Chem, 2011, 20(5): 498-502.
    董国利, 王建国, 高荫本, 陈诵英. 二氧化钛负载氧化物催化剂上CO 的氧化反应[J]. 燃料化学学报, 2000, 28(1): 1-4. (DONG Guo-li, WANG Jian-guo, GAO Yin-ben, CHEN Song-ying. Catalytic activity of CO oxidation of titania-supported oxide catalysts[J]. Journal of Fuel Chemistry and Technology, 2000, 28(1): 1-4.)
    SOMODI F, BORBÁTH I, HEGED?S M, TOMPOS A, SAJÓI E, SZEGEDI Á, ROJAS S, FIERRO J L G, MARGITFALVI J L. Modified preparation method for highly active Au/SiO2 catalysts used in CO oxidation[J]. Appl Catal A, 2008, 347(2): 216-222.
    BORE M T, PHAM H N, SWITZER E E, WARD T L, FUKUOKA A, DATYE A K. The role of pore size and structure on the thermal stability of gold nanoparticles with inmesoporous silica[J]. J Phys Chem B, 2005, 109(7): 2873-2880.
    OKUMURA M, NAKAMURA S, TSUBOTA S, NAKAMURA T, AZUMA M, HARUTA M. Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for oxidation of CO and of H2[J]. Catal Lett, 1998, 51(1/2): 53-58.
    OVERBURY S H, ORTIZ S L, ZHU H G, LEE B, AMIRIDIS M D, DAI S. Comparison of Au catalysts supported on mesoporous titania and silica: Investigation of Au particle size effects and metal-support interactions[J]. Catal Lett, 2004, 95(3/4) 99-106.
    CHOU J, FRANKLIN N R, BAECK S H, JARAMILLO T F, MCFARLAND E W. Gas-phase catalysis by micelle derived Au nanoparticles on oxide supports[J]. Catal Lett, 2004, 95(3/4): 107-111.
    BRUNAUER S, EMMETT P H. Chemisorptions of gases on iron synthetic ammonia catalysts[J]. J Am Chem Soc, 1940, 62(7): 1732-1746.
    ROUQUEROLT J, AUNIR D, FAIRBRIDGE C W, EVEREET D H, HAYNES J H, PERNICONE N, RAMSAY J D F, SING K S W, UNGER K K. Recommendations for the characterization of porous solids[J]. Pure Appl Chern, 1994, 66(8): 1739-1758.
    苏继新, 张慎平, 马丽媛, 屈文, 张明博. Au/SBA-15的制备及其催化 CO 氧化反应性能[J]. 催化学报, 2010, 31(7): 839-845. (SU Ji-xin, ZHANG Shen-ping, MA Li-yuan, QU Wen, ZHANG Ming-bo. Preparation of Au/SBA-15 and its catalytic activity for CO oxidation [J]. Chinese Journal of Catalysis, 2010, 31(7): 839-845.)
    XU H-Y, CHU W-Y, LUO J-J, ZHANG T. Impacts of MgO promoter and preparation procedure on meso-silica supported nano gold catalysts for carbon monoxide total oxidation at low temperature[J]. Chem Eng J, 2011, 170(2/3): 419-423.
    ZHANG X, SHI H, XU B-Q. Catalysis by gold: Isolated surface Au3+ ions are active sites for selective hydrogenation of 1, 3-butadiene over Au/ZrO2 catalysts[J]. Angew Chem Int Ed, 2005, 44(43): 7132-7135.
    BOCCUZZI F, CHIORINO A, MANZOLI M, LU P, AKITA T, ICHIKAWA S, HARUTA M. Au/TiO2 nanosized samples: A catalytic, TEM, and FTIR study of the effect of calcination temperature on the CO oxidation [J]. J Catal, 2001, 202(2): 256-267.
    XU H-Y, CHU W, LUO J-J, LIU M. New Au/FeOx/SiO2 catalysts using deposition-precipitation for low-temperature carbon monoxide oxidation[J]. Catal Commun, 2010, 11(9): 812-815.
    BOND G C. The effect of the metal to non-metal transition on the activity of gold catalysts[J]. Faraday Discuss, 2011, 152: 277-291.
    CHANG C-T, LIAW B-J, HUANG C-T, CHEN Y-Z. Preparation of Au/MgxAlO hydrotalcite catalysts for CO oxidation[J]. Appl Catal A, 2007, 332(2): 216-224.
    LIM D C, LOPEZ-SALIDO I, DIETSCHE R, BUBEK M, KIM Y D. Size-selectivity in the oxidation behaviors of Au nanoparticles [J]. Angew Chem Int Ed, 2006, 45(15): 2413-2415.
    QIAN K, HUANG W-X, JIANG Z-Q, SUN H-X. Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. J Catal, 2007, 248(1): 137-141.
  • 加载中
计量
  • 文章访问数:  2166
  • HTML全文浏览量:  18
  • PDF下载量:  824
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-27
  • 修回日期:  2012-05-04
  • 刊出日期:  2012-11-30

目录

    /

    返回文章
    返回