留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the environmental effects of heavy metals in coal gangue and coal combustion by ReCiPe2016 for life cycle impact assessment

PENG Hao WANG Bao-feng YANG Feng-ling CHENG Fang-qin

彭皓, 王宝凤, 杨凤玲, 程芳琴. 采用生命周期影响评价软件ReCiPe2016研究煤矸石和煤燃烧时As和Pb排放的环境效应[J]. 燃料化学学报(中英文), 2020, 48(11): 1402-1408.
引用本文: 彭皓, 王宝凤, 杨凤玲, 程芳琴. 采用生命周期影响评价软件ReCiPe2016研究煤矸石和煤燃烧时As和Pb排放的环境效应[J]. 燃料化学学报(中英文), 2020, 48(11): 1402-1408.
PENG Hao, WANG Bao-feng, YANG Feng-ling, CHENG Fang-qin. Study on the environmental effects of heavy metals in coal gangue and coal combustion by ReCiPe2016 for life cycle impact assessment[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1402-1408.
Citation: PENG Hao, WANG Bao-feng, YANG Feng-ling, CHENG Fang-qin. Study on the environmental effects of heavy metals in coal gangue and coal combustion by ReCiPe2016 for life cycle impact assessment[J]. Journal of Fuel Chemistry and Technology, 2020, 48(11): 1402-1408.

采用生命周期影响评价软件ReCiPe2016研究煤矸石和煤燃烧时As和Pb排放的环境效应

基金项目: 

the Foundation of NSFC-Shanxi Coal-based Low Carbon Joint Fund U1610254

Natural Science Foundation of Shanxi Province 201901D111006

详细信息
  • 中图分类号: TK16

Study on the environmental effects of heavy metals in coal gangue and coal combustion by ReCiPe2016 for life cycle impact assessment

Funds: 

the Foundation of NSFC-Shanxi Coal-based Low Carbon Joint Fund U1610254

Natural Science Foundation of Shanxi Province 201901D111006

More Information
  • 摘要: 在煤和煤矸石燃烧的过程中,许多重金属污染物排放到大气中,从而造成严重的环境问题,因此研究煤燃烧过程中重金属排放的环境效应很有必要。本研究运用ReCiPe2016软件计算了煤矸石和煤在330 MW煤粉炉、50 kW循环流化床和实验室燃烧时As和Pb排放的环境影响值。结果表明当煤在330 MW煤粉炉燃烧的时候,底渣、飞灰、烟气中的As排放对环境的影响值分别是3.28×10-6、2.68×10-5、3.89×10-3,底渣、飞灰、烟气中的Pb排放对环境的影响值分别是8.57×10-6、6.00×10-5、4.83×10-2。底渣中的As和Pb排放对环境的影响比飞灰中低;As和Pb排放到大气对环境的影响比排放到土壤高。另外,当煤在50 kW循环流化床燃烧的时候,飞灰中的As和Pb排放对环境的影响值分别是3.26×10-5和1.28×10-4,底渣中的As和Pb排放对环境的影响值分别是1.16×10-6和1.43×10-5。本文的研究结果还表明当煤矸石在实验室燃烧的时候,随着燃烧温度的升高,As和Pb排放对环境的影响值升高。另外,As和Pb排放到大气对环境的影响占总环境的影响比例比排放到土壤高。此项研究还表明当煤在煤粉炉和循环流化床燃烧的时候,相同工况下Pb排放对环境的影响比As高。这项结果也为运用生命周期影响评价软件预测煤矸石在循环流化床燃烧As和Pb排放的环境影响提供基础数据。
  • Figure  1  Relative proportion of environmental effects of As and Pb emission from various parts of 330 MW pulverized coal combustion

    Figure  2  Effect value of As emitting into environment during coal gangue combustion in laboratory

    Figure  3  Effect value of Pb emitting into environment during coal gangue combustion

    Table  1  Relative mass distribution of As and Pb from the 330 MW pulverized coal boiler

    Heavy metalDistribution w/%
    bottom slagfly ashflue gas
    As9.6178.640.03
    Pb11.1878.040.87
    下载: 导出CSV

    Table  2  Environmental effects of As and Pb emission during coal combustion in the 330 MW pulverized coal boiler

    Ash locationEnvironmental effect value (1, 4-DCB eq. emitted to environment)
    AsPb
    Bottom slag3.28×10-68.57×10-6
    Fly ash2.68×10-56.00×10-5
    Flue gas3.89×10-34.83×10-2
    下载: 导出CSV

    Table  3  Relative mass distribution rate of As and Pb from 50 kW circulated fluidized bed boiler

    Heavy metalDistributian w/%
    bottom slagfly ash
    As3.4496.56
    Pb9.3890.62
    下载: 导出CSV

    Table  4  Environmental effects of As and Pb emission during coal combustion in 50 kW circulated fluidized bed boiler

    Ash locationEnvironmental effect value (1, 4-DCB eq.
    emitted to environment)
    AsPb
    Bottom slag1.16×10-61.43×10-5
    Fly ash3.26×10-51.38×10-4
    下载: 导出CSV

    Table  5  Volatilization rates of As and Pb during coal gangue combustion

    Heavy metalVolatilization rate /%
    900 ℃1000 ℃
    As94.6895.19
    Pb79.6881.43
    下载: 导出CSV

    Table  6  Proportion of total effect of combustion As emission in laboratory

    Temperature /℃Combustion w/%
    into soilinto air
    9002.6221×10-499.9997
    10002.6298×10-499.9997
    下载: 导出CSV

    Table  7  Proportion of total effect of combustion Pb emission in laboratory

    Temperature /℃Combustion w/%
    into soilinto air
    9001.3784×10-299.9862
    10001.3814×10-299.9861
    下载: 导出CSV
  • [1] XIE H, NIE A. The modes of occurrence and washing floatation characteristic of arsenic in coal from western Guizhou[J]. J China Coal Soc, 2010, 35(1): 117-121. http://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201216150122.html
    [2] FENG H. The methods of instrumental analysis on arsenic, mercury, chlorie in coal and the study on the law of migration of arsenic, mercury from coal combustion[D]. Chengdu: Chengdu University of Technology, 2010.
    [3] KOLKER A, SENIOR C L, QUICK J C. Mercury in coal and the impact of coal quality on mercury emissions from combustion system[J]. Appl Geochem, 2006, 21: 1821-1836. doi: 10.1016/j.apgeochem.2006.08.001
    [4] CAO Y, GUO S, ZHAI J. Study on the occurrence modes of mercury and arsenic in coal gangue[J]. Coal Geol Explor, 2017, 45(1): 26-30. http://en.cnki.com.cn/Article_en/CJFDTotal-MDKT201701005.htm
    [5] ZHOU C, LIU G, FANG T, WU D, LAM P K S. Partitioning and transformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue[J]. Fuel, 2014, 135: 1-8. doi: 10.1016/j.fuel.2014.06.034
    [6] ZHOU C, LIU G, YAN Z, FANG T, WANG R. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J]. Fuel, 2012, 97: 244-250. http://www.sciencedirect.com/science/article/pii/S0016236112001500
    [7] LU P, XIE J, ZHANG X, WANG J. Release properties of semi-volatile heavy metals in sewage sludge/coal co-incineration under O2/CO2 atmosphere[J]. J Fuel Chem Technol, 2020, 48(5): 533-542. https://www.sciencedirect.com/science/article/pii/S0255270108000731
    [8] ZHANG Y, NAKANO J, LIU L, WANG X, ZHANG Z. Trace element partitioning behavior of coal gangue-fired CFB plant: Experimental and equilibrium calculation[J]. Environ Sci Pollut Res, 2015, 22: 15469-15478. doi: 10.1007/s11356-015-4738-6
    [9] LIU H, WANG C, HUANG X, ZHANG Y, SUN X. Volatilization of arsenic in coal during oxy-fuel combustion[J]. J Chem Ind Eng, 2015, 66(12): 5079-5087.
    [10] SPÖRL R, MAIER J, BELO L, SHAH K, STANGER R, WALL T, SCHEFFKNECHT G. Mercury and SO3 Emissions in Oxy-Fuel Combustion[J]. Energ Proc, 2014, 63: 386-402. doi: 10.1016/j.egypro.2014.11.041
    [11] CHEN Y. Migration law of flue gas mercury from coal-fired plant ULE system[J]. Electron Power Sci Technol Environ Prot, 2017, 33(1): 9-11. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DLHB201701003.htm
    [12] WANG X, LI S, WANG W, BISWAS P. Mercury oxidation during coal combustion by injection of vanadium pentoxide(V2O5)[J]. Int J Coal Geol, 2017, 170: 54-59. doi: 10.1016/j.coal.2016.10.009
    [13] HOFFART A, SEAMES W, KOZLIAK E, RIEDINGER S, FRANCINI J, CARLSON C. A two-step acid mercury removal process for pulverized coal[J]. Fuel, 2006, 85: 1166-1173. doi: 10.1016/j.fuel.2005.11.020
    [14] MARCZAK M, WIERONSKA F, BURMISTRZ P, STRUGALA A, KOGUT K, LECH S. Investigation of subbituminous coal and lignite combustion process in terms of mercury and arsenic removal[J]. Fuel, 2019, 251: 572-579. doi: 10.1016/j.fuel.2019.04.082
    [15] DUAN P, WANG W, SANG S, MA M, WANG J, ZHANG W. Modes of occurrence and removal of toxic elements from high-uranium coals of Rongyang Mine by stepped release flotation[J]. Energy Sci Eng, 2019, 7: 1678-1686. doi: 10.1002/ese3.384
    [16] TIAN L, WU H, DENG H, CHEN D, BAI X, LI J. Ecological risks of heavy metal contamination in soils around the coal gangue dump in the coal mining area[J]. Guizhou Agric Sci, 2013, 41(1): 123-127.
    [17] FINKELMAN R B. Potential health impacts of burning coal beds and waste banks[J]. Coal Geol, 2004, 59: 19-24. doi: 10.1016/j.coal.2003.11.002
    [18] LIU C, ZHOU C, ZHANG N, PAN J, CAO S, TANG M, JI W, HU T. Modes of occurrence and partitioning behavior and trace elements during coal preparation-A case study in Guizhou Province, China[J]. Fuel, 2019, 243: 79-87. doi: 10.1016/j.fuel.2019.01.106
    [19] KONG S, LIU Y, ZENG H, XIE Q, LV X. Current progress in research on the pollution of volatile heavy metals from incineration plant to its ambient soil and vegetation[J]. Ecol Environ Sci, 2010, 19(4): 985-990. https://core.ac.uk/display/155515416
    [20] ZHANG H, ZENG F, FANG Hg, LIN S. Sedimentation and capacity of cadmiunm in Beijing River[J]. Environ Sci Techno, 2010, 33(8): 120-123. http://www.cabdirect.org/abstracts/20103325407.html
    [21] MAHMUD M A P, HUDA N, FARJANA S H, LANG C. A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe[J]. Appl Energ, 2019, 250: 198-214. doi: 10.1016/j.apenergy.2019.05.007
    [22] HUIJBREGTS M A J, STEINMANN Z J N, ELSHOUT P M F, STAM G, VERONES F, VIEIRA M, ZIJP M, HOLLANDER A, ZELM R V. ReCiPe2016: A harmonised life cycle assessment method at midpoint and endpoint level(vol 22, pg 138, 2017)[J]. Int J Life Cycle Ass, 2020, 25(8): 1635-1635. doi: 10.1007/s11367-020-01761-5
    [23] KLEDJA C, ANDI M, VITO C, MLADEN T. LCA of tomato greenhouse production using spatially differentiated life cycle impact assessment indicators: An Albanian case study[J]. Environ Sci Pollut Res, 2020, 27(7): 6960-6970. doi: 10.1007/s11356-019-07191-7
    [24] HUA W, SUN H, QI J, HUANG Z, SHI Z, DUAN L. Emission characteristics of Pb and As from an ultra-low emission coal-fired power plant[J]. Therm Power Gener, 2019, 48(10): 65-70.
    [25] XU W, ZENG R. The impacts of the environmental upon arsenic in coal-burned wastes from a power plant[J]. J Minaer Petrol, 2013(4): 110-114.
    [26] ZHUO Y, AN Z, LIU Y, CHEN C. Relation between trace element enrichment and PM10 diameter from coal-fired power plants[J]. J Tsinghua Univ: Nat Sci Ed, 2013.53(3): 323-329. https://www.sciencedirect.com/science/article/pii/S0016236109002890
    [27] WANG M, ZHANG X, YANG N, LIU K, QIN F, WU Y. Study on the environmental impact of high arsenic coal utilization[J]. Coal Convers, 2012, 35(4): 77-79. http://www.zhangqiaokeyan.com/academic-journal-cn_coal-conversion_thesis/0201242578937.html
    [28] ZHUANG R, FAN Dn, CHEN Z, XU X, LIN G, WANG H, CAI C, XIONG M, HUANG H, WANG C. Harmless treatment of arsenic-bearing acidic wastewater and speciation and stability analysis of slag[J]. Nonferrous Met, 2018.5: 69-73. http://en.cnki.com.cn/Article_en/CJFDTotal-METE201805016.htm
    [29] CHEN Y, HE K. Analysis of chromium and lead in coal combustion[J]. Mod Business Trade Ind, 2007.6:178-179.
    [30] ZHAO S, DUAN Y, ZHOU Q, ZHANG J, DU H, TANG H, LV J. Experimental study on trace elements emission characteristics in coal-fired circulating fluidized bed[J]. Proc CSEE, 2017, 37(1): 193-199. http://www.researchgate.net/publication/317027357_Experimental_study_on_trace_elements_emission_characteristics_in_coal-fired_circulating_fluidized_bed
    [31] PENG H, WANG B, YANG F, CAO Y, CHENG F. Emission characteristics of heavy metal during combustion of coal gangue and coal slime[J]. Clean Coal Technol, 2019, 25(5): 118-124.
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  21
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 修回日期:  2020-11-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-11-10

目录

    /

    返回文章
    返回