留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酸性分子筛上甲醇催化转化反应机理研究进展

卫智虹 陈艳艳 王森 李俊汾 董梅 秦张峰 王建国 樊卫斌

卫智虹, 陈艳艳, 王森, 李俊汾, 董梅, 秦张峰, 王建国, 樊卫斌. 酸性分子筛上甲醇催化转化反应机理研究进展[J]. 燃料化学学报(中英文), 2013, 41(08): 897-910.
引用本文: 卫智虹, 陈艳艳, 王森, 李俊汾, 董梅, 秦张峰, 王建国, 樊卫斌. 酸性分子筛上甲醇催化转化反应机理研究进展[J]. 燃料化学学报(中英文), 2013, 41(08): 897-910.
WEI Zhi-hong, CHEN Yan-yan, WANG Sen, LI Jun-fen, DONG Mei, QIN Zhang-feng, WANG Jian-guo, FAN Wei-bin. A review on the mechanism for the catalytic conversion of methanol over acid molecular sieves[J]. Journal of Fuel Chemistry and Technology, 2013, 41(08): 897-910.
Citation: WEI Zhi-hong, CHEN Yan-yan, WANG Sen, LI Jun-fen, DONG Mei, QIN Zhang-feng, WANG Jian-guo, FAN Wei-bin. A review on the mechanism for the catalytic conversion of methanol over acid molecular sieves[J]. Journal of Fuel Chemistry and Technology, 2013, 41(08): 897-910.

酸性分子筛上甲醇催化转化反应机理研究进展

基金项目: 国家重点基础研究发展规划(973计划, 2011CB201403, 2011CB201406, 2010CB234603); 国家自然科学基金(21103216, 21003148, 21273264, 10979068).
详细信息
    通讯作者:

    樊卫斌

  • 中图分类号: O643

A review on the mechanism for the catalytic conversion of methanol over acid molecular sieves

  • 摘要: 概括了甲醇转化反应机理实验和理论研究方法,介绍了甲醇脱水预平衡阶段的主要机理模型和实验理论依据,重点综述了C-C键形成过程中涉及到的直接机理和"烃池"机理的实验与理论研究进展和存在的问题,探讨了分子筛孔道结构对"烃池"物种结构和反应历程的影响.
  • 乔治A 奥拉, 阿兰 戈佩特, G K 苏耶 普拉卡西. 跨越油气时代: 甲醇经济[M]. 北京: 化学工业出版社, 2007. (OLAH G A, GOEPPERT A, PRAKASH G K S. Beyond oil and gas: The methanol economy[M]. Beijing: Chemical Industry Press, 2007.)
    HEMELSOET K, VAN DER MYNSBRUGGE J, DE WISPELAERE K, WAROQUIER M, VAN SPEYBROECK, V. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment[J]. ChemPhysChem, 2013, 14(8): 1526-1545.
    STÖCKER M. Methanol-to-hydrocarbons: Catalytic materials and their behavior[J]. Micropor Mesopor Mat, 1999, 29(1/2): 3-48.
    DAHL I M, KOLBOE S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catal Lett, 1993, 20(3): 329-336.
    MCCANN D M, LESTHAEGHE D, KLETNIEKS P W, GUENTHER D R, HAYMAN M J, VAN SPEYBROECK V, WAROQUIER M, HAW J F. A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment[J]. Angew Chem Int Edit, 2008, 47(28): 5179-5182.
    HAW J F, SONG W G, MARCUS D M, NICHOLAS J B. The mechanism of methanol to hydrocarbon catalysis[J]. Accounts Chem Res, 2003, 36(5): 317-326.
    OLSBYE U, BJRGEN M, SVELLE S, LILLERUD K P, KOLBOE S. Mechanistic insight into the methanol-to-hydrocarbons reaction[J]. Catal Today, 2005, 106(1): 108-111.
    BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal, 2007, 249(2): 195-207.
    WANG W, HUNGER M. Reactivity of surface alkoxy species on acidic zeolite catalysts[J]. Accounts Chem Res, 2008, 41(8): 895-904.
    李春义, 沈师孔. 稳态同位素瞬变动力学分析[J]. 化学进展, 1999, 11(1): 49-59. (LI Chun-yi, SHEN Shi-kong. Steady state isotopic transient kinetic analysis[J]. Progress in Chemistry, 1999, 11(1): 49-59.)
    罗久里. 脉冲式微型催化反应器(III)[J]. 石油炼制与化工, 1980, 6: 51-54. (LUO Jiu-li. Pulse-feed catalytic microreactors(III)[J]. Petroleum Processing and Petrochemicals, 1980, 6: 51-54.)
    许建华, 陈清林, 纪红兵. 原位漫反射红外光谱技术用于气固催化反应机理的研究[J]. 化学进展, 2008, 20(6): 811-820. (XU Jian-hua, CHEN Qing-lin, JI Hong-bing. Application of in situ DRIFTS in the investigation of reaction mechanisms for gas solid catalytic reactions [J]. Progress in Chemistry, 2008, 20(6): 811-820.)
    辛勤, 罗孟飞. 现代催化研究方法[M]. 北京: 科学出版社, 2009. (XIN Qin, LUO Meng-fei. Modern catalytic research methods[M]. Beijing: Science Publishing Company, 2009.)
    HUNGER M, WEITKAMP J. In situ IR, NMR, EPR, and UV/Vis spectroscopy: Tools for new insight into the mechanisms of heterogeneous catalysis[J]. Angew Chem Int Edit, 2001, 40(16): 2954-2971.
    HUNGER M, HORVATH T. A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions[J]. J Chem Soc Chem Comm, 1995, (14): 1423-1424.
    EYRING H. The activated complex in chemical reactions[J]. J Chem Phys, 1935, 3(2): 107-115.
    LAIDLER K J, KING M C. Development of transition-state theory[J]. J Phys Chem, 1983, 87(15): 2657-2664.
    TRUHLAR D G, GARRETT B C, KLIPPENSTEIN S J. Current status of transition-state theory[J]. J Phys Chem, 1996, 100(31): 12771-12800.
    BROADBELT L J, SNURR R Q. Applications of molecular modeling in heterogeneous catalysis research[J]. Appl Catal A: Gen, 2000, 200(1): 23-46.
    张跃, 谷景华, 尚家香, 马岳. 计算材料学基础[M]. 北京: 航空航天大学出版社, 2007. (ZHANG Yue, GU Jing-hua, SHANG Jia-xiang, MA Yue. Computational materials science[M]. Beijing: Beihang University Press, 2007.)
    CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory[J]. Phys Rev Lett, 1985, 55(22): 2471-2474.
    MARX D, HUTTER J. Ab initio molecular dynamics: Basic theory and advanced methods[M]. New York: Cambridge University Press, 2009.
    SALVADOR P, KLADNIG W. Surface reactivity of zeolites type HY and Na-Y with methanol[J]. J Chem Soc Faraday Trans 1, 1977, 73(0): 1153-1168.
    BLASZKOWSKI S, VAN SANTEN R. Density functional theory calculations of the activation of methanol by a Brønsted zeolitic proton[J]. J Phys Chem, 1995, 99(30): 11728-11738.
    SHAH R, PAYNE M, LEE M H, GALE J D. Understanding the catalytic behavior of zeolites: A first-principles study of the adsorption of methanol[J]. Science, 1996, 271(5254): 1395-1397.
    JEANVOINE Y, NGYN J G, KRESSE G, HAFNER J. On the nature of water interacting with Brønsted acidic sites. Ab initio molecular dynamics study of hydrated HSAPO-34 [J]. J Phys Chem B, 1998, 102(38): 7307-7310.
    TICH I, GALE J, TERAKURA K, PAYNE M C. Role of the zeolitic environment in catalytic activation of methanol [J]. J Am Chem Soc, 1999, 121(14): 3292-3302.
    FORESTER T R, WONG S T, HOWE R F. In situ Fourier transform I.R. observation of methylating species in ZSM-5[J]. J Chem Soc Chem Comm, 1986, (21): 1611-1613.
    FORESTER T, HOWE R. In situ FTIR studies of methanol and dimethyl ether in ZSM-5[J]. J Am Chem Soc, 1987, 109(17): 5076-5082.
    WANG W, SEILER M, HUNGER M. Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy[J]. J Phys Chem B, 2001, 105(50): 12553-12558.
    WANG W, BUCHHOLZ A, ARNOLD A, XU M C, HUNGER M. Effect of surface methoxy groups on the 27Al quadrupole parameters of framework aluminum atoms in calcined zeolite H-Y[J]. Chem Phys Lett, 2003, 370(1): 88-93.
    BLASZKOWSKI S R, VAN SANTEN R A. Theoretical study of the mechanism of surface methoxy and dimethyl ether formation from methanol catalyzed by zeolitic protons[J]. J Phys Chem B, 1997, 101(13): 2292-2305.
    WANG W, BUCHHOLZ A, SEILER M, HUNGER M. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts[J]. J Am Chem Soc, 2003, 125(49): 15260-15267.
    LESTHAEGHE D, VAN SPEYBROECK V, MARIN G B, WAROQUIER M. Understanding the failure of direct C-C coupling in the zeolite-catalyzed methanol-to-olefin process[J]. Angew Chem Int Edit, 2006, 45: 1714-1719.
    MOSES P G, NORSKOV J K. Methanol to dimethyl ether (DME) over ZSM-22. A periodic density functional theory study[J]. ACS Catal, 2013, 3(4 ): 735-745.
    SWABB E A, GATES B C. Diffusion, reaction, and fouling in H-mordenite crystallites. The catalytic dehydration of methanol[J]. Ind Eng Chem Fundam, 1972, 11(4): 540-545.
    CHANG C D, SILVESTRI A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal, 1977, 47(2): 249-259.
    BIBBY D M, CHANG C D, HOWE R F, YURCHAK S. Methane conversion[M]. Amsterdam: Elsevier, 1988.
    HUTCHINGS G J, WATSON G W, WILLOCK D J. Methanol conversion to hydrocarbons over zeolite catalysts: Comments on the reaction mechanism for the formation of the first carbon-carbon bond[J]. Micropor Mesopor Mat, 1999, 29(1): 67-77.
    ONO Y, MORI T. Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite[J]. J Chem Soc Faraday Trans 1, 1981, 77(9): 2209-2221.
    OLAH G A, DOGGWEILER H, FELBERG J D, FROHLICH S, GRDINA M J, KARPELES R, KEUMI T, INABA S, IP W M, LAMMERTSMA K. Onium Ylide chemistry. 1. Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The onium ylide mechanism of the C1 C2 conversion[J]. J Am Chem Soc, 1984, 106(7): 2143-2149.
    TAJIMA N, TSUNEDA T, TOYAMA F, HIRAO K. A new mechanism for the first carbon-carbon bond formation in the MTG process: A theoretical study[J]. J Am Chem Soc, 1998, 120(32): 8222-8229.
    VENUTO P, LANDIS P. Formation of stilbenes and related compounds from reaction of benzyl-type mercaptans over zeolites[J]. J Catal, 1971, 21(3): 330-335.
    YAMAZAKI H, SHIMA H, IMAI H, YOKOI T, TATSUMI T, KONDO J N. Evidence for a "carbene-like" intermediate during the reaction of methoxy species with light alkenes on H-ZSM-5[J]. Angew Chem, 2011, 123(8): 1893-1896.
    SMITH B S, MARCH J著, 李艳梅译. March高等有机化学: 反应、机理与结构[M]. 第5版. 北京: 化学工业出版社, 2009. (SMITH B S, MARCH J. March's advanced organic chemistry: Reactions, mechanisms, and structure[M]. 5th ed. Beijing: Chemical Industry Press, 2009.)
    OLAH G A, KLOPMAN G, SCHLOSBERG R H. Super acids. III. Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane, 2, 2-dimethylpropane and 2, 2, 3, 3-tetramethylbutane in FSO3H-SbF5[J]. J Am Chem Soc, 1969, 91(12): 3261-3268.
    SMITH R D, FUTRELL J H. Evidence for complex formation in the reactions of CH3+ and CD3+ with CH3OH, CD3OD, and C2H5OH[J]. Chem Phys Lett, 1976, 41(1): 64-67.
    MUNSON E J, HAW J F. NMR observation of trimethyloxonium formation from dimethyl ether on zeolite HZSM-5[J]. J Am Chem Soc, 1991, 113(16): 6303-6305.
    MUNSON E J, KHEIR A A, LAZO N D, HAW J F. In situ solid-state NMR study of methanol-to-gasoline chemistry in zeolite HZSM-5[J]. J Phys Chem, 1992, 96(19): 7740-7746.
    BLASZKOWSKI S R, VAN SANTEN R A. Theoretical study of C-C bond formation in the methanol-to-gasoline process [J]. J Am Chem Soc, 1997, 119(21): 5020-5027.
    KUBELKOV L, NOVKOV J, JRU。 P. Reaction of small amounts of methanol on HZSM-5, HY and modified Y zeolites[J]. Stud Surf Sci Catal, 1984, 18: 217-224.
    LO C S, RADHAKRISHNAN R, TROUT B L. Application of transition path sampling methods in catalysis: A new mechanism for C-C bond formation in the methanol coupling reaction in chabazite [J]. Catal Today, 2005, 105(1): 93-105.
    YAMAZAKI H, SHIMA H, IMAI H, YOKOI T, TATSUMI T, KONDO J N. Direct production of propene from methoxy species and dimethyl ether over H-ZSM-5[J]. J Phys Chem C, 2012, 116(45): 24091-24097.
    SONG W G, MARCUS D M, FU H, EHRESMANN J O, HAW J F. An oft-studied reaction that may never have been: Direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34[J]. J Am Chem Soc, 2002, 124(15): 3844-3845.
    HAW J F, MARCUS D M. Well-defined (supra) molecular structures in zeolite methanol-to-olefin catalysis[J]. Top Catal, 2005, 34(1): 41-48.
    SONG W G, HAW J F. Improved methanol-to-olefin catalyst with nanocages functionalized through ship-in-a-bottle synthesis from PH3[J]. Angew Chem Int Edit, 2003, 42(8): 892-894.
    ARSTAD B, NICHOLAS J B, HAW J F. Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis[J]. J Am Chem Soc, 2004, 126(9): 2991-3001.
    BJØRGEN M, OLSBYE U, PETERSEN D, KOLBOE S. The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from benzene and methanol coreactions over zeolite H-beta[J]. J Catal, 2004, 221(1): 1-10.
    SEILER M, WANG W, BUCHHOLZ A, HUNGER M. Direct evidence for a catalytically active role of the hydrocarbon pool formed on zeolite H-ZSM-5 during the methanol-to-olefin conversion[J]. Catal Lett, 2003, 88(3): 187-191.
    OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Edit, 2012, 51(24): 5810-5831.
    SONG W G, HAW J F, NICHOLAS J B, HENEGHAN C S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J]. J Am Chem Soc, 2000, 122(43): 10726-10727.
    MIKKELSEN Ø, RØNNING P O, KOLBOE S. Use of isotopic labeling for mechanistic studies of the methanol-to-hydrocarbons reaction. Methylation of toluene with methanol over H-ZSM-5, H-mordenite and H-beta[J]. Micropor Mesopor Mat, 2000, 40(1): 95-113.
    SULLIVAN R, EGAN C J, LANGLOIS G, SIEG R P. A new reaction that occurs in the hydrocracking of certain aromatic hydrocarbons[J]. J Am Chem Soc, 1961, 83(5): 1156-1160.
    MOLE T, BETT G, SEDDON D. Conversion of methanol to hydrocarbons over ZSM-5 zeolite: An examination of the role of aromatic hydrocarbons using 13carbon-and deuterium-labeled feeds[J]. J Catal, 1983, 84(2): 435-445.
    MOLE T, WHITESIDE J A, SEDDON D. Aromatic co-catalysis of methanol conversion over zeolite catalysts[J]. J Catal, 1983, 82(2): 261-266.
    SASSI A, WILDMAN M A, AHN H J, PRASAD P, NICHOLAS J B, HAW J F. Methylbenzene chemistry on zeolite HBeta: Multiple insights into methanol-to-olefin catalysis[J]. J Phys Chem B, 2002, 106(9): 2294-2303.
    SONG W G, NICHOLAS J B, SASSI A, HAW J F. Synthesis of the heptamethylbenzenium cation in zeolite-β: In situ NMR and theory[J]. Catal Lett, 2002, 81(1/2): 49-53.
    LESTHAEGHE D, HORR A, WAROQUIER M, MARIN G B, VAN SPEYBROECK V. Theoretical insights on methylbenzene side-chain growth in ZSM-5 zeolites for methanol-to-olefin conversion[J]. Chem-Eur J, 2009, 15(41): 10803-10808.
    HEREIJGERS B P, BLEKEN F, NILSEN M H, SVELLE S, LILLERUD K P, BJØRGEN M, WECKHUYSEN B M, OLSBYE U. Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts[J]. J Catal, 2009, 264(1): 77-87.
    WANG C M, WANG Y D, XIE Z K, LIU Z P. Methanol to olefin conversion on HSAPO-34 zeolite from periodic density functional theory calculations: A complete cycle of side chain hydrocarbon pool mechanism[J]. J Phys Chem C, 2009, 113(11): 4584-4591.
    WANG C M, WANG Y D, XIE Z K. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species?[J]. J Catal, 2013, 301: 8-19.
    BJØRGEN M, OLSBYE U, SVELLE S, KOLBOE S. Conversion of methanol to hydrocarbons: the reactions of the heptamethylbenzenium cation over zeolite H-beta[J]. Catal Lett, 2004, 93(1/2): 37-40.
    SVELLE S, RØNNING P O, OLSBYE U, KOLBOE S. Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of propene or n-butene and methanol[J]. J Catal, 2005, 234(2): 385-400.
    TEKETEL S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites[J]. Micropor Mesopor Mat, 2010, 136(1): 33-41.
    BHATTACHARYA D, SIVASANKER S. A comparison of aromatization activities of the medium pore zeolites, ZSM-5, ZSM-22, and EU-1[J]. J Catal, 1995, 153(2): 353-355.
    SVELLE S, OLSBYE U, JOENSEN F, BJØRGEN M. Conversion of methanol to alkenes over medium-and large-pore acidic zeolites: Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J Phys Chem C, 2007, 111(49): 17981-17984.
    SVELLE S, JOENSEN F, NERLOV J, OLSBYE U, LILLERUD K P, KOLBOE S, BJØRGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006, 128(46): 14770-14771.
    XU T, HAW J F. Cyclopentenyl carbenium ion formation in acidic zeolites: An in situ NMR study of cyclic precursors[J]. J Am Chem Soc, 1994, 116(17): 7753-7759.
    HAW J F, NICHOLAS J B, SONG W G, DENG F, WANG Z K, XU T, HENEGHAN C S. Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5[J]. J Am Chem Soc, 2000, 122(19): 4763-4775.
    XU T, BARICH D H, GOGUEN P W, SONG W G, WANG Z K, NICHOLAS J B, HAW J F. Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor[J]. J Am Chem Soc, 1998, 120(16): 4025-4026.
    LESTHAEGHE D, VAN DER MYNSBRUGGE J, VANDICHEL M, WAROQUIER M, VAN SPEYBROECK V. Full Theoretical cycle for both ethene and propene formation during methanol-to-olefin conversion in H-ZSM-5[J]. ChemCatChem, 2011, 3(1): 208-212.
    LESTHAEGHE D, DE STERCK B, VAN SPEYBROECK V, MARIN G B, WAROQUIER M. Zeolite shape-selectivity in the gem-methylation of aromatic hydrocarbons[J]. Angew Chem Int Edit, 2007, 46(8): 1311-1314.
    VAN SPEYBROECK V, VAN DER MYNSBRUGGE J, VANDICHEL M, HEMELSOET K, LESTHAEGHE D, GHYSELS A, MARIN G B, WAROQUIER M. First principle kinetic studies of zeolite-catalyzed methylation reactions[J]. J Am Chem Soc, 2011, 133: 888-899.
    LI J Z, WEI Y X, QI Y, TIAN P, LI B, HE Y L, CHANG F X, SUN X D, LIU Z M. Conversion of methanol over H-ZSM-22: The reaction mechanism and deactivation[J]. Catal Today, 2011, 164(1): 288-292.
  • 加载中
计量
  • 文章访问数:  2890
  • HTML全文浏览量:  46
  • PDF下载量:  2740
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-11
  • 修回日期:  2013-06-30
  • 刊出日期:  2013-08-30

目录

    /

    返回文章
    返回