留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni-WO3/SBA-15催化剂上纤维素的水解加氢

曹月领 王军威 李其峰 殷宁 刘振民 亢茂青 朱玉雷

曹月领, 王军威, 李其峰, 殷宁, 刘振民, 亢茂青, 朱玉雷. Ni-WO3/SBA-15催化剂上纤维素的水解加氢[J]. 燃料化学学报(中英文), 2013, 41(08): 943-949.
引用本文: 曹月领, 王军威, 李其峰, 殷宁, 刘振民, 亢茂青, 朱玉雷. Ni-WO3/SBA-15催化剂上纤维素的水解加氢[J]. 燃料化学学报(中英文), 2013, 41(08): 943-949.
CAO Yue-ling, WANG Jun-wei, LI Qi-feng, YIN Ning, LIU Zhen-min, KANG Mao-qing, ZHU Yu-lei. Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts[J]. Journal of Fuel Chemistry and Technology, 2013, 41(08): 943-949.
Citation: CAO Yue-ling, WANG Jun-wei, LI Qi-feng, YIN Ning, LIU Zhen-min, KANG Mao-qing, ZHU Yu-lei. Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts[J]. Journal of Fuel Chemistry and Technology, 2013, 41(08): 943-949.

Ni-WO3/SBA-15催化剂上纤维素的水解加氢

基金项目: 国家重点基础研究发展规划(973计划, 2012CB215305).
详细信息
    通讯作者:

    王军威

  • 中图分类号: O643.38

Hydrolytic hydrogenation of cellulose over Ni-WO3/SBA-15 catalysts

  • 摘要: 采用等体积浸渍法制备了Ni-WO3/SBA-15催化剂,将其应用于纤维素的水相氢解.考察了温度对纤维素水解和其形貌的影响及Ni、WO3含量等对纤维素转化行为的影响.XRD表征结果表明,随着温度的升高纤维素颗粒粒径逐渐变小并趋于均一,结晶状态逐渐由晶型变为无定型态.H2-TPR结果表明,Ni和WO3间存在较强的相互作用,这种相互作用提高了W物种对C-C键的解离性能,同时,提高了Ni物种的加氢活性,促进了纤维素向乙二醇的转化.在3%Ni-15%WO3/SBA-15催化剂上,反应条件为230 ℃、6.0 MPa、6.0 h时,纤维素完全转化,乙二醇的产率达到70.7%.
  • ONDA A, OCHI T, YANAGISAWA K. Selective hydrolysis of cellulose into glucose over solid catalysts[J]. Green Chem, 2008, 10(10): 1033-1037.
    SU Y, BROWN H M, HUANG X W, ZHOU X D, AMONETTE J E, ZHANG Z C. Single-step conversion of cellulose to 5-hydroxymethylfurfural(HMF), a versatile platform chemical[J]. Appl Catal A: Gen, 2009, 361(1/2): 117-122.
    ZHENG M Y, WANG A Q, JI N, PANG J F, WANG X D, ZHANG T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem, 2010, 3(1): 63-66.
    HUBER G W, CHHEDA J N, BARRETT C J, DUMESIC J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450.
    ZHANG J Z, LIU X, SUN M, MA X H, HAN Y. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium[J]. ACS Catal, 2012, 2(8): 1698-1702.
    FUKUOKA A, DHEPE P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angew Chem, 2006, 118(31): 5285-5287.
    DENG W P, TAN X S, FANG W H, ZHANG Q H, WANG Y. Conversion of cellusoe into sorbitol over carbon nanotube-supported ruthenium catalyst[J]. Catal Lett, 2009, 133(2): 167-174.
    YOU S J, BAEK I G, KIM Y T, JEONG K E, CHAE H J, KIM T W, KIM C U, JEONG S Y, KIM T J, CHUNG Y M, OH S H, PARK E D. Direct conversion of cellulose into polyols or H2 over Pt/Na(H)-ZSM-5[J]. Korean J Chem Eng, 2011, 28(3): 744-750.
    GEBOERS J, VAN DE VYVER S, CARPENTIER K, JACOBS P, SELS B. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Catal Commun, 2010, 46(20): 3577-3579.
    LIANG G F, WU C Y, HE L M, MING J, CHENG H Y, ZHUO L H, ZHAO F Y. Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst[J]. Green Chem, 2011, 13(4): 839-842.
    GEBOERS J, VAN DE VYVER S, CARPENTIER K, JACOBS P, SELS B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid[J]. Catal Commun, 2011, 47(19): 5590-5592.
    JI N, ZHANG T, ZHENG M Y, WANG A Q, WANG H, WANG X D, CHENG J G. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angew Chem, 2008, 120(44): 8638-8641.
    ZHANG Y H, WANG A Q, ZHANG T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chem Comm, 2010, 46(6): 862-864.
    WANG X C, MENG L Q, WU F, JIANG Y J, WANG L, MU X D. Efficient conversion of microcrystalline cellulose to 1,2- alkanediols over supported Ni catalysts[J]. Green Chem, 2012, 14(3): 758-765.
    DING L N, WANG A Q, ZHENG M Y, ZHANG T. Selective transformation of cellulose into sorbitol by using a bifunc-tional nickel phosphide catalyst[J]. ChemSusChem, 2010, 3(7): 818-821.
    REYES-LUYANDA D, FLORES-CRUZ J, MORALES-PREZ P J, ENCARNACIN-GMEZ L G, SHI F, VOYLES P M, CARDO-NA-MARTNEZ N. Bifunctional materials for the catalytic conversion of cellulose into soluble renewable biorefinery feedstocks[J]. Top Catal, 2012, 55(3): 148-161.
    JOLLET V, CHAMBON F, RATABOUL F, CABIAC A, PINEL C, GUILLON E, ESSAYEM N. Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution-conversion: Influence of the reaction parameters and analysis of the unreacted cellulose[J]. Green Chem, 2009, 11(12): 2052-2060.
    SHROTRI A, TANKSALE A, BELTRAMINI J N, GURAV H, CHILUKURI S V. Conversion of cellulose to polyols over promoted nickel catalysts[J]. Catal Sci Technol, 2012, 2(9): 1852-1858.
    CAMPBELL C T, GOODMAN D W. A surface science investigation of the role of potassium promoters in nickel catalysts for CO hydrogenation[J]. Surf Sci, 1982, 123(2/3): 413-426.
    SWAAN H M, KROLL V C H, MARTIN G A, MIRODATOS C. Deactivation of supported nickel catalysts during the re-forming of methane by carbon dioxide[J]. Catal Today, 1994, 21(1): 571-578.
    LIU Y, LUO C, LIU H C. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst[J]. Angew Chem Int Ed, 2012, 51(13): 3249-3253.
    VAN DE VYVER S, GEBOERS J, JACOBS P A, SELS B F. Recent advances in the catalytic conversion of cellulose[J]. ChemCatChem, 2011, 3(1): 82-94.
    TAI Z J, ZHANG J Y, WANG A Q, ZHENG M Y, ZHANG T. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chem Commun, 2012, 48(56): 7052-7054.
  • 加载中
计量
  • 文章访问数:  1952
  • HTML全文浏览量:  29
  • PDF下载量:  774
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-13
  • 修回日期:  2013-06-21
  • 刊出日期:  2013-08-30

目录

    /

    返回文章
    返回