留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲烷在氧化铁表面还原NO的特性与反应机理研究

苏亚欣 邓文义 苏阿龙

苏亚欣, 邓文义, 苏阿龙. 甲烷在氧化铁表面还原NO的特性与反应机理研究[J]. 燃料化学学报(中英文), 2013, 41(09): 1129-1135.
引用本文: 苏亚欣, 邓文义, 苏阿龙. 甲烷在氧化铁表面还原NO的特性与反应机理研究[J]. 燃料化学学报(中英文), 2013, 41(09): 1129-1135.
SU Ya-xin, DENG Wen-yi, SU A-long. NO reduction by methane over iron oxides and the mechanism[J]. Journal of Fuel Chemistry and Technology, 2013, 41(09): 1129-1135.
Citation: SU Ya-xin, DENG Wen-yi, SU A-long. NO reduction by methane over iron oxides and the mechanism[J]. Journal of Fuel Chemistry and Technology, 2013, 41(09): 1129-1135.

甲烷在氧化铁表面还原NO的特性与反应机理研究

基金项目: 国家自然科学基金(51278095);上海市自然科学基金(11ZR1401000)。
详细信息
    通讯作者:

    苏亚欣(1972-), 男, 博士, 副教授。 E-mail: suyx@dhu.edu.cn, Tel: 021-67792552。

  • 中图分类号: X511

NO reduction by methane over iron oxides and the mechanism

  • 摘要: 在程序控温电加热水平陶瓷管反应器中,在300~1 050 ℃,对N2气氛中甲烷在氧化铁(充分氧化后的铁丝网卷)表面还原NO的特性进行了实验研究,测试了NO脱除效率、CO生成量以及反应后铁样品表面组分和微观状态的变化特点,分析了甲烷在氧化铁表面还原NO的反应机理。在此基础上,在1 000 ℃时,对模拟烟气条件下甲烷在氧化铁表面还原NO的持久性进行了实验研究。结果表明,甲烷在氧化铁表面能够高效地还原NO。在N2气氛下,在850 ℃以上达到100%的NO脱除效率。在模拟烟气中,甲烷在氧化铁表面脱除NO的能力具有很好的持久性。实验结果表明,在1 000 ℃时,采用由体积分数为2.0%的O2、16.8%的 CO2和524×10-6的 NO,N2配平的模拟烟气,1.17% CH4能够在连续100 h内保持100%的NO脱除效率,而未出现下降的趋势。对反应机理的研究结果表明,甲烷在氧化铁表面还原NO的机理包括甲烷通过再燃机理还原NO以及甲烷通过在氧化铁表面还原氧化铁为金属铁、金属铁进而直接还原NO两种主要反应机理。其中,后者为主要反应机理。
  • PARVULESCU V I, GRANGE P, DELMON B. Catalytic removal of NO[J]. Catal Today, 1998, 46(4): 233-316.
    JANSSEN F, MEIJER R. Quality control of DeNOx catalysts performance testing, surface analysis and characterization of DeNOx catalysts[J]. Catal Today, 1993, 16(2): 157-185.
    CENTI G, PERATHONER S. Introduction: State of the art in the development of catalytic processes for the selective catalytic reduction of NOx into N2[J]. Stud Surf Sci Catal, 2007, 171: 1-24.
    IWAMOTO M. Zeolites in environmental catalysis[J]. Stud Surf Sci Catal, 1994, 84: 1395-1410.
    TABATA T, KOKITSU M, OKADA O. Study on patent literature of catalysts for a new NOx removal process[J]. Catal Today, 1994, 22(1): 147-169.
    FENG X B, HALL W. KEI T H. FeZSM-5: A durable SCR catalyst for NOx removal from combustion streams[J]. J Catal, 1997, 166(2): 368-376.
    APOSTOLESCU N, GEIGER B, HIZBULLAH K, JAN M T, KURETI S, REICHERT D, SCHOTT F, WEISWEILER W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Appl Catal B: Environ, 2006, 62(1/2): 104-114.
    KRISHNA K, SEIJGER G B F, van DEN BLEEK C M, MAKKEE M, MUL G, CALIS H P A. Selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalysts prepared by sublimation of FeCl3 at different temperatures[J]. Catal Lett, 2003, 86(1/3): 121-132.
    LI Y, BATTAVIO P B, ARMOR J N. Effect of water-vapor on the selective reduction of NO by methane over cobalt-exchanged ZSM-5[J]. J Catal, 1993, 142(2): 561-571.
    LI Y, ARMOR J N. Selective catalytic reduction of NOx with methane over metal exchanged zeolites[J]. Appl Catal B: Environ, 1993, 2(2/3): 239-256.
    CHOI B C, FOSTER D E. State-of-the-art of de-NOx technology using zeolite catalysts in automobile engines[J]. J Ind Eng Chem, 2005, 1(1): 1-9.
    BETHKE KA, KUNG M C, YANG B, SHAH M, ALT D, LI C, KUNG H H. Metal oxide catalysts for lean NOx reduction[J]. Catal Today, 1995, 26(2): 169-183.
    BETHKE K A, ALT D, KUNG M C. NO reduction by hydrocarbons in an oxidizing atmosphere over transition metal-zirconium mixed oxides[J]. Catal Lett, 1994, 25(1/2): 37-48.
    ILIOPOULOU E F, EVDOU A P, LEMONIDOU A A, VASALOS I A. Ag/alumina catalysts for the selective catalytic reduction of NOx using various reductants[J]. Appl Catal A: Gen, 2004, 274(1/2): 179-189.
    KOTSIFA A, KONDARIDES DI, VERYKIOS XE. A comparative study of the selective catalytic reduction of NO by propylene over supported Pt and Rh catalysts[J]. Appl Catal B: Environ, 2008, 80(3/4): 260-270.
    LIU Z, WANG K, ZHANG X, WANG J, CAO H, GONG M, CHEN Y. Study on methane selective catalytic reduction of NO on Pt/Ce0.67Zr0.33O2 and its application[J]. J Nat Gas Chem, 2009, 18(1): 66-70.
    苏亚欣, 苏阿龙, 成豪。 金属铁直接催化还原NO的实验研究[J]. 煤炭学报, 2013, 38(s1): 206-210. (SU Ya-xin, SU A-long, CHENG Hao. Experimental study on direct catalytic reduction of NO by metallic iron[J]. Journal of China Coal Society, 2013, 38(s1): 206-210.)
    李然家, 沈师孔. 晶格氧用于甲烷氧化制合成气的研究-氧化铁的氧化还原性能[J]. 分子催化, 2001, 3(15): 181-186. (LI Ran-jia, SHENG Shi-kong. Study on lattice oxygen used in the conversion of methane to synthesis gas - redox performance of Fe2O3 Catalyst[J]. Journal of Molecular Catalysis (China), 2001, 3(15):181-186.)
    TAKENAKA S, HANAIZUMI N, OTSUKA K, OTSUKA, K. Production of pure hydrogen from methane mediated by the redox of Ni- and Cr- added iron oxides[J]. J Catal, 2004, 228(2): 405-416.
    NAKAYAMA O, IKENAGA N, MIYAKE T, YAGASAKI E, SUZUKI T. Production of synthesis gas from methane using lattice oxygen of NiO-Cr2O3-MgO complex oxide[J]. Ind Eng Chem Res, 2010, 49(2): 526-534.
    TAMAURA Y, WADA Y, YOSHIDA T, TSUJI M. The coal/Fe3O4 system for mixing of solar and fossil energies[J]. Energy, 1997, 22(2/3): 337-342.
    陈庚. 气基还原氧化铁动力学机理研究[D]. 大连: 大连理工大学, 2011. (CHENG Geng. The kinetics of the gas-based reduction of iron oxide[D]. Dalian: Dalian University of Technology, 2011.)
    王华, 魏永刚. 晶格氧部分氧化甲烷制取合成气技术[M]. 北京: 冶金工业出版社, 2009. (WANG Hua, WEI Yong-gang. Partial oxidation of methane by lattice oxygen to produce synthesis gas[M]. Beijing: Metallurgical Industry Press, 2009.)
    MILLER J A, BOWMAN C T. Mechanism and modeling of nitrogen chemistry in combustion[J]. Prog Energ Combus Sci, 1989, 15(4): 287-337.
    苏亚欣, GATHITU B B, WEI-YIN CHEN. Fe2O3控制再燃脱硝中间产物HCN的实验研究[J]. 环境科学学报, 2011, 31(6): 1181-1186. (SU Ya-xin, GATHITU, BENSON B, CHEN, WEI-YIN CHEN. Experimental examination of HCN compound control by Fe2O3 during reburning processes[J]. Journal of Enironmental Sciences, 2011, 31(6): 1181-1186.)
    IVANOV V, NAGY J B, LAMBIN P, LUCAS A, ZHANG X B, ZHANG X F, BERNAERTS D, VANTENDELOO G, AMELINCKX S, VANLANDUYT J. The study of carbon nanotubes produced by catalytic method[J]. Chem Phys Lett, 1994, 223(4): 329-335.
    FLAHAUST E, GOVINDARAJ A, PEIGNEY A, LAURENT C, ROUSSET A, RAO CNR. Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions[J]. Chem Phys Lett, 1999, 300(1/2): 236-242.
    SMOOT L D, HILL S C, XU H. NOx control through reburning[J]. Prog Energy Combus Sci, 1998, 24(5): 385-408.
    TAN H Z, WANG X B, NIU Y Q, LIU H Y, WANG C L, XU T M. Studies of intereaction mechanism between iron and HCN[J]. Asian J Chem, 2010, 22(5): 4017-4025.
    ZENKOV V I, PASICHNYI V V. Reduction kinetics of iron oxides used for hydrogen production in various gas media[J]. Powder Metal Met Ceram, 2010, 49(3/4): 213-237.
    ZENKOV V I, PASICHNYI V V, REDKO V P. Reduction of iron-containing metallurgical waste to obtain hydrogen with iron vapor method[J]. Powder Metal Met Ceram, 2008, 47(11/12): 733-742.
    GRADON B, LASEK J. Investigation of reduction of NO to N2 by reaction with Fe[J]. Fuel, 2010, 89(11): 3505-3509.
    SU Y X, SU A L, CHENG H. Experimental study of NO reduction by iron in CO atmosphere[J]. Adv Mater Res, 2012, 518-523: 2138-2142.
  • 加载中
计量
  • 文章访问数:  1964
  • HTML全文浏览量:  15
  • PDF下载量:  969
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-31
  • 修回日期:  2013-02-28
  • 刊出日期:  2013-09-30

目录

    /

    返回文章
    返回