留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤灰/K2CO3/Fe2O3对脱矿无烟煤燃点与燃烧速率的影响

张书 陈宗定 陈绪军 公旭中

张书, 陈宗定, 陈绪军, 公旭中. 煤灰/K2CO3/Fe2O3对脱矿无烟煤燃点与燃烧速率的影响[J]. 燃料化学学报(中英文), 2014, 42(02): 166-174.
引用本文: 张书, 陈宗定, 陈绪军, 公旭中. 煤灰/K2CO3/Fe2O3对脱矿无烟煤燃点与燃烧速率的影响[J]. 燃料化学学报(中英文), 2014, 42(02): 166-174.
ZHANG Shu, CHEN Zong-ding, CHEN Xu-jun, GONG Xu-zhong. Effects of ash/K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite[J]. Journal of Fuel Chemistry and Technology, 2014, 42(02): 166-174.
Citation: ZHANG Shu, CHEN Zong-ding, CHEN Xu-jun, GONG Xu-zhong. Effects of ash/K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite[J]. Journal of Fuel Chemistry and Technology, 2014, 42(02): 166-174.

煤灰/K2CO3/Fe2O3对脱矿无烟煤燃点与燃烧速率的影响

基金项目: National Nature Science Foundation of China (51004090)
详细信息
  • 中图分类号: TQ534

Effects of ash/K2CO3/Fe2O3 on ignition temperature and combustion rate of demineralized anthracite

Funds: National Nature Science Foundation of China (51004090)
  • 摘要: 考察了煤灰/K2CO3/Fe2O3及其之间的相互作用对酸洗无烟煤燃点和燃烧速率的影响。不同温度下制备的煤灰显示了不一样的性质(如化学组成、颜色和形貌)。脱矿无烟煤(负载和非负载催化剂)的燃烧反应性测试在热重分析仪(TG-DTG)中完成,结果表明,煤灰本身对酸洗无烟煤的燃点几乎没有影响,而高温下制备的煤灰能够明显提高酸洗无烟煤的燃烧速率。当煤灰和K2CO3 或者Fe2O3的混合物加入酸洗无烟煤中作为燃烧催化剂时,可以看出与单独使用K2CO3 或 Fe2O3相比,煤灰的加入明显导致酸洗煤的燃烧速率下降,而对其燃点影响不大。同样,K2CO3 和 Fe2O3之间的相互作用也能够对酸洗无烟煤的燃烧速率产生负面影响。
  • SAMIT M, SUNIL K S. Minerals transformations in Northeastern region coals of India on heat treatment[J]. Energy Fuels, 2006, 20(3): 1089-1096.
    VAN-DYK J C, WAANDERS F B, BENSON S A, LAUMB M L, HACK K. Viscosity predictions of the slag composition of gasified coal, utilizing FactSage equilibrium modelling[J]. Fuel, 2009, 88(1): 67-74.
    MCLENNAN A R, BRYANT G W, STANMORE B R, WALL T F. Ash formation mechanisms during pf combustion in reducing conditions[J]. Energy Fuels, 2000, 14(1): 150-159.
    LIU Y H, CHE D F, XU T M. The effects of indigenous minerals in a coal on the emissions of NO and SO2 during combustion[J]. Combust Flame, 2004, 138(4): 404-406.
    ÖZTAS N A, YÜRÜM Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000, 79(10): 1211-1227.
    RALF K, HENRYK Z. Catalytic effects of ash components in low rank coal gasification. 1. Gasification with carbon dioxide[J]. Fuel, 1991, 69(3): 275-281.
    MÉNDEZ L B, BORREGO A G, MARTINEZ-TARAZONA M R, MENÉNDEZ R. Influence of petrographic and mineral matter composition of coal particles on their combustion reactivity[J]. Fuel, 2003, 82(15): 1875-1882.
    RUBIERA F, ARENILLAS A, PEVIDA C, GARCÍIA R, PIS J J, STEEL K M, PATRICK J W. Coal structure and reactivity changes induced by chemical demineralization[J]. Fuel Process Technol, 2002, 79(3): 273-279.
    SUJANTI W, ZHANG D K. A laboratory study of spontaneous combustion of coal: The influence of inorganic matter and reactor size[J]. Fuel, 1999, 78(5): 549-556.
    CRELLING J C, HIPPO E J, WOERNER B A, WEST J D P. Combustion characteristics of selected whole coals and macerals[J]. Fuel, 1992, 71(2): 151-158.
    LEMAIGNEN L, ZHOU Y, REED G P, DUGWELL D R, DANDIYOUTI R. Factors governing reactivity in low temperature coal gasification. Part II. An attempt to correlate conversions with inorganic and mineral constituents[J]. Fuel, 2002, 81(3): 315-326.
    BAI J, LI W, LI B Q. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008, 87(4): 583-591.
    HEDDEN K, WILHELM A. Catalytic effects of inorganic substances on reactivity and ignition temperature of solid fuels[J]. Ger Chem Eng, 1980, 3(2): 142-147.
    WU Z H, XU L, WANG Z Z, ZHANG Z R. Catalytic effects on the ignition temperature of coal[J]. Fuel, 1998, 77(8): 891-893.
    LIU Y H, CHE D F, XU T M. Effects of NaCl on the capture of SO2 by CaCO3 during coal combustion[J]. Fuel, 2006, 85(4): 524-531.
    ZHAO Z B, LI W, QIU J S, WANG X Z, LI B Q. Influence of Na and Ca on the emission of NOx during coal combustion[J]. Fuel, 2006, 85(5): 601-606.
    MCKEE D W. Mechanisms of the alkali metal catalyzed gasification of carbon[J]. Fuel, 1983, 62(2): 170-175.
    BAI J, LI W, LI C Z, BAI Z Q, LI B Q. Infulences of minerals transformation on the reactivity of high temperature char gasification[J]. Fuel Process Technol, 2010, 91(4): 404-409.
    VAN-DYK J C, BENSON S A, LAUMB M L, WAANDERS B. Coal and coal ash characteristics to understand mineral transformations and slag formation[J]. Fuel, 2009, 88(6): 1057-1063.
    VARGAS S, FRANDSEN F J, DAM-JOHANSEN K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Prog Energy Combust Sci, 2001, 27(3): 237-429.
    GONG X Z, GUO Z C, WANG Z. Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3[J]. Combust Flame, 2010, 157(2): 351-356.
    GURURAJAN V S, WALL T F, GUPTA R P, TRUELOVE J S. Mechanisms for the ignition of pulverized coal particles[J]. Combust Flame, 1990, 81(12): 119-132.
    LOTHAR K, HORST P. Reaction of catalysts with matter during coal gasification[J]. Fuel, 1983, 62(2): 205-208.
    FORMELLA K, LEONHARDT P, SULIMMA A, VANHEEK K H, JÜNTGEN H. Interaction of mineral matter in coal with potassium during gasification[J]. Fuel, 1986, 65(10): 1470-1472.
    PRANDA P, PRANDOÁ K, HLAVACEK V. Combustion of fly-ash carbon Part I. TG-DTA study of ignition temperature[J]. Fuel Process Technol, 1999, 61(3): 211-221.
    AN H M, MCGINN P J. Catalytic behavior of potassium containing compounds for soot combustion[J]. Appl Catal B: Environ, 2006, 62(1): 46-56.
    JIMÉNEZ R, GARCÍA X I, CELLIER C, RUIZ P, GORDON A L. Soot combustion with K/MgO as catalyst[J]. Appl Catal A: Gen, 2006, 297(2): 125-134.
    HAO Z Z, WU S L, WANG Y C, LUO G P, WU H L, DUAN X G. Acting mechanism of F, K, and Na in the solid phase sintering reaction of the Baiyunebo iron ore[J]. Int J Miner Metal Mater, 2010, 17(2): 137-142.
  • 加载中
计量
  • 文章访问数:  1027
  • HTML全文浏览量:  26
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-09
  • 修回日期:  2013-12-13
  • 刊出日期:  2014-02-28

目录

    /

    返回文章
    返回