留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The sol-gel derived Co-Mn/TiO2 catalysts for light olefins production

Mohammad Mehdi Khodaei Mostafa Feyzi Jahangir Shahmoradi Mohammad Joshaghani

Mohammad Mehdi Khodaei, Mostafa Feyzi, Jahangir Shahmoradi, Mohammad Joshaghani. The sol-gel derived Co-Mn/TiO2 catalysts for light olefins production[J]. 燃料化学学报(中英文), 2014, 42(02): 212-218.
引用本文: Mohammad Mehdi Khodaei, Mostafa Feyzi, Jahangir Shahmoradi, Mohammad Joshaghani. The sol-gel derived Co-Mn/TiO2 catalysts for light olefins production[J]. 燃料化学学报(中英文), 2014, 42(02): 212-218.
Mohammad Mehdi Khodaei, Mostafa Feyzi, Jahangir Shahmoradi, Mohammad Joshaghani. The sol-gel derived Co-Mn/TiO2 catalysts for light olefins production[J]. Journal of Fuel Chemistry and Technology, 2014, 42(02): 212-218.
Citation: Mohammad Mehdi Khodaei, Mostafa Feyzi, Jahangir Shahmoradi, Mohammad Joshaghani. The sol-gel derived Co-Mn/TiO2 catalysts for light olefins production[J]. Journal of Fuel Chemistry and Technology, 2014, 42(02): 212-218.

The sol-gel derived Co-Mn/TiO2 catalysts for light olefins production

详细信息
  • 中图分类号: O643

The sol-gel derived Co-Mn/TiO2 catalysts for light olefins production

  • 摘要: In this research work, two 30%(Co-Mn)/TiO2 catalysts were prepared using sol-gel (catalyst A) and co-precipitation (catalyst B) methods. The activity and selectivity to C2~4 light olefins in Fischer-Tropsch synthesis (FTS) has been studied in a fixed-bed reactor under different operational conditions. These operational conditions were: temperature 220~280 ℃, and total pressure from 0.1~0.6 MPa. The optimum operating conditions were investigated after steady state. As the results shown, the catalyst A was more selective to C2~4 olefins (58.7% in 260 ℃) and catalyst B was more selective to C5+ hydrocarbons. Characterization of both catalysts was carried out by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption measurements methods.
  • CHANENCHUK C A, YATES I C, SATTERFIELD C N. The Fischer-Tropsch synthesis with a mechanical mixture of a cobalt catalyst and a copper-based water gas shift catalyst[J]. Energy Fuels, 1991, 5(6): 847-855.
    HAGHSHENAS FARD M, MALEKI L, KHOSHNODI M, MIRZAEI A A. Hydrogenation of CO over a cobalt/cerium oxide catalyst for production of lower olefins[J]. Iran J Sci Tech Trans B, 2004, 28(B6): 689-693.
    Park C, Baker R T K. Carbon deposition on iron–nickel during interaction with ethylene-carbon monoxide-hydrogen mixtures[J]. J Catal, 2000, 190(1): 104-117.
    KLBEL H, TILLMETZ D K. Chem Abst, 1977, 86(4) (1977) 192342.
    FEYZI M, MIRZAEI A A. Catalytic behaviors of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2012, 40(12): 1435-1443.
    TAUSTER S J, FUNG S C, GARDEN R. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J Am Chem Soc, 1978, 100(1): 170-175.
    MA X D, SUN Q W, CAO F H, YING W Y, FANG D Y. Effects of the different supports on the activity and selectivity of iron-cobalt bimetallic catalyst for Fischer-Tropsch synthesis[J]. J Nat Gas Chem, 2006, 15(4): 335-339.
    COPPERWAITE R G, HUTCHINGS G J, VAN DER RIET M, WOODHOUSE J R. Carbon monoxide hydrogenation using manganese oxide-based catalysts: Effect of operating conditions on alkene selectivity[J]. Int Eng Chem Res, 1987, 26(5): 969-974.
    COLLEY S, COPPERTHWAITE R G, HUTCHINGS G J, VAN DER RIET M. Carbon monoxide hydrogenation using cobalt manganese oxide catalysts: Initial catalyst optimization studies[J]. Int Eng Chem Res, 1988, 27(8): 1339-1344.
    VAN DER RIET M, HUTCHINGS G J, COPPERTHWAITE R G. Selective formation of C3 hydrocarbons from CO + H2 using cobalt-manganese oxide catalysts[J]. J Chem Soc Chem Commun, 1986, 98(10): 798-799.

    DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002, 71(3): 227-241.
    REUEL R C, BARTOLOMEW C H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt[J]. J Catal, 1984, 85(1): 78-88.
    IGLESIA E, SOLED S L, FIATO R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. J Catal, 1992, 137(1): 212-224.
    MIRZAEI A A, FAIZI M, HABIBPOUR R. Effect of preparation conditions on the catalytic performance of cobalt manganese oxide catalysts for conversion of synthesis gas to light olefins[J]. Appl Catal A: Gen, 2006, 306: 98-107.
    ZHANG H B, SCHRADER G L. Characterization of a fused iron catalyst for Fischer-Tropsch synthesis by in situ laser Raman spectroscopy[J]. J Catal, 1985, 95(1): 325-332.
    SHROFF M D, KALAKKAD D S, KOHLER S, JACKSON N B, SAULT A G, DATYE A K. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal, 1995, 156(2): 185-207.
    O'BRIEN R J, XU L, MILBURN D R, LI Y X, KLABUNDE K J, DAVIS B H. Fischer-Tropsch synthesis: Impact of potassium and zirconium promoters on the activity and structure of an ultrafine iron oxide catalyst[J]. Top Catal, 1995, 2(1/4): 1-15.
    AMELSE J A, BUTT J B, SCHWARTZ L H. Carburization of supported iron synthesis catalysts[J]. J Phys Chem, 1978, 82(5): 558-563.
    MAULDIN C H, VARNADO D E. Rhenium as a prometer of titania-supported cobalt Fischer-Tropsch catalysts[J]. Stud Surf Sci Catal, 2004, 136: 417-422.
    BARRAULT J, FORQUY C, PERRICHON V. Effects of manganese oxide and sulphate on olefin selectivity of iron supported catalysts in the Fischer-Tropsch reaction[J]. Appl Catal A: Gen, 1993, 5(1): 119-125.
    KRISHNA K R, BELL A T. Estimates of the rate coefficients for chain initiation, propagation, and termination during Fischer-Tropsch synthesis over Ru/TiO2[J]. J Catal, 1993, 139(1): 104-118.
    GRIBOVAL-CONSTANT A, KHODAKOV A Y, BECHARA R, ZHOLOBENKO V L. Support mesoporosity: A tool for better control of catalytic behavior of cobalt supported Fischer-Tropsch catalysts[J]. Stud Surf Sci Catal, 2002, 144: 609-616.
    FEYZI M, KHODAEI M M, SHAHMORADI J. Effect of preparation and operation conditions on the catalytic performance of cobalt-based catalysts for light olefins production[J]. J Fuel Process Technol, 2012, 93(1): 90-98.
    KUIPERS E W, SCHEPER C, WILSON J H, VINKENBURG I H, OOSTERBEEK H. Non-ASF product distributions due to secondary reactions during Fischer-Tropsch synthesis[J]. J Catal, 1996, 158(1): 288-300.
    MORALES F, GRANDJEAN D, MENS A, DE GROOT F M F, WECKHUYSEN B M. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: Relationships between preparation method, molecular structure, and catalyst performance[J]. J Phys Chem, 2006, 110(17): 8626-8639.
  • 加载中
计量
  • 文章访问数:  944
  • HTML全文浏览量:  26
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-11
  • 修回日期:  2014-01-04
  • 刊出日期:  2014-02-28

目录

    /

    返回文章
    返回