留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物燃料电池处理生活污水同步产电特性研究

赵煜 马彦 李婷 薄晓 王俊文 李鹏 钟丽萍 孙彦平

赵煜, 马彦, 李婷, 薄晓, 王俊文, 李鹏, 钟丽萍, 孙彦平. 生物燃料电池处理生活污水同步产电特性研究[J]. 燃料化学学报(中英文), 2014, 42(04): 481-486.
引用本文: 赵煜, 马彦, 李婷, 薄晓, 王俊文, 李鹏, 钟丽萍, 孙彦平. 生物燃料电池处理生活污水同步产电特性研究[J]. 燃料化学学报(中英文), 2014, 42(04): 481-486.
ZHAO Yu, MA Yan, LI Ting, BO Xiao, WANG Jun-wen, LI Peng, ZHONG Li-ping, SUN Yan-ping. Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2014, 42(04): 481-486.
Citation: ZHAO Yu, MA Yan, LI Ting, BO Xiao, WANG Jun-wen, LI Peng, ZHONG Li-ping, SUN Yan-ping. Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2014, 42(04): 481-486.

生物燃料电池处理生活污水同步产电特性研究

基金项目: 国家自然科学基金(21176168);山西省留学基金(2012081016)。
详细信息
    通讯作者:

    孙彦平(1944-),男,博士,教授,主要从事电化学反应工程研究。Tel:+86 351 6010070;E-mail:ypsun@tyut.edu.cn。

  • 中图分类号: TM911.45

Treatment of sewage and synchronous electricity generation characteristics by microbial fuel cell

  • 摘要: 以某生活污水处理厂缺氧池活性污泥为接种体,以葡萄糖为模拟生活废水,构建双室型微生物燃料电池。利用微生物燃料电池(MFC,Microbial fuel cell)实现生活废水降解与同步产电。研究基质降解动力学及温度对MFC电极过程动力学的影响,明确微生物电化学活性、阳极传荷阻抗、阳极电势、电池产能之间的关系,考察库伦效率及COD去除率。研究结果表明,电池功率输出与基质浓度关系遵循莫顿动力学方程:P=Pmaxc/(ks+c),其中,半饱和常数ks为138.5 mg/L,最大功率密度Pmax为320.2 mW/m2。葡萄糖浓度较小时,反应遵循一级动力学规律:-dcA/dt=kcAk=0.262 h-1。操作温度从20 ℃提高到35 ℃,生物膜电化学活性不断提高,传荷阻抗从361.2 Ω减小到36.2 Ω,阳极电极电势不断降低,同时,峰值功率密度从80.6 mW/m2提高到183.3 mW/m2。45 ℃时,产电菌活性降低,峰值功率密度减小到36.8 mW/m2。葡萄糖浓度为1 500 mg/L,温度为35 ℃时,MFC电化学性能最佳,稳定运行6 h后库伦效率为44.6%,COD去除率为49.2%。
  • BOND D R, HOLMES D E, TENDER L M, LOVLEY D R. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295(5554): 483-485.
    KIM B H , PARK H S, KIM H J, KIM G T, CHANG I S, LEE J, PHUNG N T. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell[J]. Appl Microbiol Biot, 2004, 63(6): 672-681.
    LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environ Sci Technol, 2004, 38(7): 2281-2285.
    ZHANG B G, ZHAO H Z, ZHOU S G, SHI C H, WANG C,NI J R. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation[J]. Bioresour Technol, 2009, 100(23): 5687-5693.
    MOHAN S V, MOHANAKRSHNA G, SARMA P N. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell[J]. Bioresour Technol, 2010, 101(3): 970-976.
    RODRIGO M A, CANIZARES P, LOBATO J, PAZ R, SEZ C, LINARES J J. Production of electricity from the treatment of urban waste water using a microbial fuel cell[J]. J Power Sources, 2007, 169(1): 198-204.
    MIN B, LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environ Sci Technol, 2004, 38(21): 5809-5814.
    ZUO Y, MANESS P C, LOGAN B E. Electricity production from steam-exploded corn stover biomass[J]. Energy Fuel, 2006, 20(4): 1716-1721.
    GIL G C, CHANGI S, KIM B H, KIM M, JANG J K, PARK H S, KIM H J. Operational parameters affecting the performance of a mediator-less microbial fuel cell[J]. Biosensors Bioelectron, 2003, 18(4): 327-334.
    GONZALEZ DEL CAMPO A, LOBATO J, CAIZARESB P, RODRIGO M A, FERNANDEZ MORALESA F J. Short-term effects of temperature and COD in a microbial fuel cell[J]. Appl Energy, 2013, 101: 213-217.
    MIN B, ROMN O B, ANGELIDAKI I. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance[J]. Biotechnol Lett, 2008, 30(7): 1213-1218.
    JADHAV G S, GHANGREKAR M M. Performance of microbial fuel cell subjected tovariation in pH, temperature, external load and substrate concentration[J]. Bioresour Technol, 2009, 100(2): 717-723.
    LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environ Sci Tech, 2005, 39(14): 5488-5493.
    LARROSA-GUERRERO A, SCOTT K, HEAD I M, MATEO F, GINESTA A, GODINEZ C. Effect of temperature on the performance of microbial fuel cells[J]. Fuel, 2010, 89(12): 3985-3994.
    PATIL S A, HARNSICH F, KAPADNIS B, SCHRDER U. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: The role of temperature for biofilm formation and performance[J]. Biosensors Bioelectron, 2010, 26(2): 803-808.
    赵煜, 李鹏, 王晓斌, 孙彦平. 微生物燃料电池中生物膜成长对电池电化学性能的影响[J]. 燃料化学学报, 2012, 40(8): 967-972.

    (ZHAO Yu, LI Peng, WANG Xiao-bin, SUN Yan-ping. Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 967-972.)
    LOGAN B E, FLEURY R C. Multiphasic kinetics can be an artifact of the assumption of saturable kinetics for microorganisms[J]. Mar Ecol Prog Ser, 1993, 102: 115-124.
    KIM J R,PREMIER G C,HAWKES F R,RODRGUEZB J, DINSDALEB R M, GUWYB A J. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate[J]. Bioresour Technol, 2010, 101(4): 1190-1198.
    HERNANDEZ M E, KAPPLER A, NEWMAN D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Appl Environ Microbio, 2004, 70(2): 921-928.
    GRALNICK J A, NEWMAN D K. Extracellular respiration[J]. Mol Microbio, 2007, 65(1): 1-11.
    RABAEY K, BOON N, SICILIANO S D, VERHAEGE M, VERSTRAETE W. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbio, 2004, 70(9): 5373-5382.
    CHEN S A, LIU H, LOGAN B E. Power densities using different cathode catalysts(Pt and CoTMPP) and polymer binders(Nafion and PTFE) in single chamber microbial fuel cells[J]. Environ Sci Technol, 2006, 40(1): 364-369.
    [JP4]LOGAN B E, HAMELERS B, ROZENDAL R. Microbial fuel cells: Methodology and technology[J]. Environ Sci Technol, 2006, 40(17): 5181-5192.[JP]
    [JP5]SCHRDER U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency[J]. Phys Chem Chem Phys, 2007, 9(21): 2619-2629.[JP]
    AELTERMAN P, FREGUIA S, KELLER J, VERSTRARTE W, RABAEY K. The anode potential regulates bacterial activity in microbial fuel cells[J]. Appl Microbio Biotechnol, 2008, 78(3): 409-418.
  • 加载中
计量
  • 文章访问数:  855
  • HTML全文浏览量:  14
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-23
  • 修回日期:  2014-02-12
  • 刊出日期:  2014-04-30

目录

    /

    返回文章
    返回