留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SO2和H2O对CeO2/TiO2/堇青石催化剂选择催化还原NOx性能的影响

束韫 张凡 王洪昌 朱金伟

束韫, 张凡, 王洪昌, 朱金伟. SO2和H2O对CeO2/TiO2/堇青石催化剂选择催化还原NOx性能的影响[J]. 燃料化学学报(中英文), 2014, 42(09): 1111-1118.
引用本文: 束韫, 张凡, 王洪昌, 朱金伟. SO2和H2O对CeO2/TiO2/堇青石催化剂选择催化还原NOx性能的影响[J]. 燃料化学学报(中英文), 2014, 42(09): 1111-1118.
SHU Yun, ZHANG Fan, WANG Hong-chang, ZHU Jin-wei. Influence of SO2 and H2O on the selective catalytic reduction of NOx over CeO2/TiO2/cordierite catalyst[J]. Journal of Fuel Chemistry and Technology, 2014, 42(09): 1111-1118.
Citation: SHU Yun, ZHANG Fan, WANG Hong-chang, ZHU Jin-wei. Influence of SO2 and H2O on the selective catalytic reduction of NOx over CeO2/TiO2/cordierite catalyst[J]. Journal of Fuel Chemistry and Technology, 2014, 42(09): 1111-1118.

SO2和H2O对CeO2/TiO2/堇青石催化剂选择催化还原NOx性能的影响

基金项目: 国家自然科学基金(2012AA062505);中央级公益性科研院所基本科研业务专项(2013-YSKY-01)。
详细信息
    通讯作者:

    张凡,研究员,Tel:010-84915188,E-mail:zhangfan5188@vip.sina.com。

  • 中图分类号: X51

Influence of SO2 and H2O on the selective catalytic reduction of NOx over CeO2/TiO2/cordierite catalyst

  • 摘要: 采用浸渍法制备了以堇青石为基底、氧化铈为活性组分的整体式脱硝催化剂CeO2/TiO2/堇青石催化剂。通过与商业钒基催化剂(V2O5-WO3/TiO2/堇青石)的对比研究发现,CeO2/TiO2/堇青石催化剂表现出了优良的抗硫抗水性能,经过30 h抗硫抗水实验,CeO2/TiO2/堇青石催化剂的氮氧化物转化率仍能保持在70%以上,仅下降了5%。BET、XRD、FT-IR和TG表征结果表明,在含硫含水气氛中反应时,CeO2/TiO2/堇青石和V2O5-WO3/TiO2/堇青石催化剂表面均有硫酸铵盐的生成,且前者的生成量明显低于后者。NH3-DRIFT分析结果表明,在含硫含水气氛中两种催化剂表面Brønsted酸性都被增强,而Lewis酸性有所减弱。进一步的XPS分析结果表明,烟气中的SO2+H2O会使催化剂表面Ce4+向Ce3+发生转化,从而导致化学吸附氧含量增加,这是CeO2/TiO2/堇青石催化剂具有优良抗硫抗水性能的重要原因。
  • BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998, 18(1/2): 1-36.
    沈伯雄, 熊丽仙, 刘亭, 王静, 田晓娟. 纳米负载型V2O5-WO3/TiO2催化剂碱中毒及再生研究[J]. 燃料化学学报, 2010, 38(1): 85-90. (SHEN Bo-xiong, XIONG Li-xian, LIU Ting, WANG Jing, TIAN Xiao-juan. Alkali deactivation and regeneration of nano V2O5-WO3/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 85-90.)
    DUNN J P, KOPPULA P R, STENGER H G. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Appl Catal B: Environ, 1998, 19(2): 103-117.
    BOGER T, HEIBEL A K, SORENSEN C M. Monolithic catalysts for the chemical industry[J]. Ind Eng Chem Res, 2004, 43(16): 4602-4614.
    LONG R Q, YANG R T. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J]. J Am Chem Soc, 1999, 121(23): 5595-5596.
    XU W Q, YU Y B, ZHANG C B, HE H. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J]. Catal Commun, 2008, 9: 1453-1457.
    沈伯雄, 郭宾彬, 史展亮, 吴春飞, 梁材. CeO2/ACF的低温SCR烟气脱硝性能研究[J]. 燃料化学学报, 2007, 35(1): 125-128. (CHEN Bo-xiong, GUO Bing-bing, SHI Zhang-liang, WU Chun-fei, LIANG Cai. Selective catalytic reduction of NO over carbon nanotubes supported CeO2[J]. Journal of Fuel Chemistry and Technology, 2007, 35(1): 125-128.)
    ZHU Z P, LIU Z Y, NIU H X, LIU S J. Promoting effect of SO2 on activated carbon-supported vanadia catalyst for NO reduction by NH3 at low temperatures[J]. J Catal, 1999, 187(1): 245-248.
    LONG R Q, YANG R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts[J]. J Catal, 1999, 186(2): 254-268.
    HOU Y Q, HUANG Z G, GUO S J. Effect of SO2 on V2O5/ACF catalysts for NO reduction with NH3 at low temperature[J]. Catal Commun, 2009, 10(11): 1538-1541.
    CHEN J, YANG R T. Selective catalytic reduction of NO with NH3 on SO2-4/TiO2 super acid catalyst[J]. J Catal, 1993, 139(1): 277-288.
    LONG R Q, Chang M, YANG R T. Enhancement of activities by sulfation on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of NO by ammonia[J]. Appl Catal B: Environ, 2001, 33(2): 97-107.
    GARCÍA B E, PINILLA J L, LÁZARO M J, MOLINER R. Role of sulphates on the mechanism of NH3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths[J]. J Catal, 2005, 233(1): 166-175.
    ROY S, VISWANATH B, HEGDE M S. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M=Cr, Mn, Fe, Co, Cu)[J]. J Phys Chem C, 2008, 112(15): 6002-6112.
    金瑞奔. 负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究. 杭州: 浙江大学, 2010. (JIN Rui-ben. Study on the supported Mn-Ce low temperature SCR DeNOx catalysts: Preparation, reaction mechanism and SO2 tolerance. Hangzhou: Zhejiang University, 2010.)
    HUANG Z, ZHU Z P, LIU Z Y. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures[J]. Appl Catal B: Environ, 2002, 39(4): 361-368.
    FREDERICKSON L D, HAUSEN D M. Infrared spectra-structure correlation study of vanadium-oxygen compounds[J]. Anal Chem, 1963, 35(8): 818-824.
    TOPSØE N Y. Mechanism of the selective catalytic reduction of nitric-oxide by ammonia elucidated by in situ on-line fourier transform infrared spectroscopy[J]. Science, 1994, 265(5176): 1217-1219.
    TAKAGI M, KAWAI T, SOMA M. Mechanism of catalytic reaction between NO and NH3 on V2O5 in the presence of oxygen[J]. J Phys Chem, 1976, 80(4): 430-437.
    MARBÁN G, FUERTES T. Mechanism of low temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4-role of surface NH3 species: SCR mechanism[J]. J Catal, 2004, 226(1): 138-155.
    HUANG J H, TONG Z Q, HUANG Y. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J]. Appl Catal B: Environ, 2008, 78(3/4): 309-314.
    CHEN L, LI J H, GE M F. DRIFT study on cerium-tungsten titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environ Sci Technol, 2010, 44(24): 9590-9598.
    GUAN B, LIN H, ZHU L. Selective catalytic reduction of NOx with NH3 over Mn, Ce substitution Ti0.9V0.1O2-δ nanocomposites catalysts prepared by self-propagating high-temperature synthesis method[J]. J Phys Chem C, 2011, 115(26): 12850-12863.
    DAMYANOVA S, PEREZ C A, SCHMAL M. Characterization of ceria-coated alumina carrier[J]. Appl Catal A: Gen, 2002, 234(1/2): 271-282.
    LI Y, ZHANG B C, TANG X L. Hydrogen production from methane decomposition over Ni/CeO2 catalysts[J]. Catal Commun, 2006, 7(6): 380-386.
    LIU F D, HE H, ASAKURA K. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ, 2011, 103(3/4): 369-377.
    PEÑA D A, UPHADE B S, REDDY E P. Identification of surface species on titania supported manganese, chromium, and copper oxide low-temperature SCR catalysts[J]. J Phys Chem B, 2004, 108(28): 9927-9936.
    CENTENO M A, CARRIZOSA I, ODRIOZOLA J A. NO-NH3 co-adsorption on vanadia/titania catalysts: Determination of the reduction degree of vanadium[J]. Appl Catal B: Environ, 2001, 29(4): 307-314.
    WAQIF M, BAZIN P, SAUR O. Study of ceria sulfation[J]. Appl Catal B: Environ, 1997, 11(2): 193-205.
    PÃRVULESCU V I, BOGHOSIAN S, PÃRVULESCU V, JUNG S M, GRANGE P. Selective catalytic reduction of NO with NH3 over mesoporous V2O5-TiO2-SiO2 catalyst[J]. J Catal, 2003, 217(1): 172-185.
    NOLAN M. Molecular adsorption on the doped(110) ceria surface[J]. J Phys Chem C, 2009, 113(6): 2425-2432.
    LIETTI L. Reactivity of V2O5-WO3/TiO2 de-NOx catalysts by transient methods[J]. Appl Catal B: Environ, 1996, 10(4): 281-297.
  • 加载中
计量
  • 文章访问数:  558
  • HTML全文浏览量:  21
  • PDF下载量:  808
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-11
  • 修回日期:  2014-06-13
  • 刊出日期:  2014-09-30

目录

    /

    返回文章
    返回