留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素酚类单体化合物制备烷烃燃料

戴楠 杨珍 黄耀兵 傅尧

戴楠, 杨珍, 黄耀兵, 傅尧. 木质素酚类单体化合物制备烷烃燃料[J]. 燃料化学学报(中英文), 2015, 43(01): 48-53.
引用本文: 戴楠, 杨珍, 黄耀兵, 傅尧. 木质素酚类单体化合物制备烷烃燃料[J]. 燃料化学学报(中英文), 2015, 43(01): 48-53.
DAI Nan, YANG Zhen, HUANG Yao-bing, FU Yao. Preparation of liquid fuel from lignin phenolic monomers[J]. Journal of Fuel Chemistry and Technology, 2015, 43(01): 48-53.
Citation: DAI Nan, YANG Zhen, HUANG Yao-bing, FU Yao. Preparation of liquid fuel from lignin phenolic monomers[J]. Journal of Fuel Chemistry and Technology, 2015, 43(01): 48-53.

木质素酚类单体化合物制备烷烃燃料

基金项目: 国家重点基础研究发展规划(973计划, 2012CB215306,2013CB228103); 国家自然科学基金(21325208,21361140372,21172209); 教育部中央高校基本科研业务费专项(WK2060190025); 高等学校博士点基金(20123402130008)、中国科学院基金(KJSTBZ2-EW-J02); 霍英东教育基金资助.
详细信息
    通讯作者:

    傅尧,E-mail:fuyao@ustc.edu.cn.

  • 中图分类号: TQ6

Preparation of liquid fuel from lignin phenolic monomers

  • 摘要: 通过引入中间小分子化合物,采用傅克烷基化反应,实现了从木质素酚类单体化合物制备长链烷烃燃料.考察了催化剂、醛酮类小分子化合物、反应时间、反应温度、物料比、底物等条件对从木质素酚类单体制备二聚体反应结果的影响,并对得到的木质素酚类二聚体产物进一步加氢还原,得到C13~19烷烃燃料.结果表明,当物料比n(木质素酚类单体)/n(醛酮类中间小分子)为15:3,以Amberlyst-15为酸性催化剂,在100 ℃的条件下,反应24 h,可以得到68%产率的二聚体化合物(当底物是愈创木酚和丙醛时).将得到的二聚体化合物在270 ℃,4 MPa H2的不锈钢反应釜中进行加氢反应,3 h后,二聚体化合物完全转化为液体烷烃.提出从木质素单体出发通过引入中间小分子,实现C-C链增长来制备烷烃燃料的合成路线,为木质素的开发和应用提出了新思路与实验基础.
  • JIANG J, YU J, CORMA A. Extra-large-pore zeolites: Bridging the gap between micro and mesoporous structures[J]. Angew Chem Int Ed, 2010, 49(18): 3120-3145.
    SUN J, BONNEAU C, CANTIN A, CORMA A, DIAZ-CABANÑAS M J, MOLINER M, ZHANG D, LI M, ZOU X. The ITQ-37 mesoporous chiral zeolite[J]. Nature, 2009, 458(7242): 1154-1157.
    CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007, 107(6): 2411-2502.
    HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098.
    WYMAN C E, DALE B E, ELANDER R T, HOLTZAPPLE M, LADISCH M R, LEE Y Y. Coordinated development of leading biomass pretreatment technologies[J]. Bioresour Technol, 2005, 96(18): 1959-1966.
    MCCARTHY J L, ISLAM A. Lignin chemistry, technology, and utilization: A brief history[C]//ACS Symposium Series. Washington, DC; American Chemical Society, 1999, 742: 2-99.
    NIMMANWUDIPONG T, RUNNEBAUM R C, BLOCK D E, GATES B C. Catalytic reactions of guaiacol: Reaction network and evidence of oxygen removal in reactions with hydrogen[J]. Catal Lett, 2011, 141(6): 779-783.
    HOCKING M B. Vanillin: Synthetic flavoring from spent sulfite liquor[J]. J Chem Educ, 1997, 74(9): 1055.
    冯君锋, 蒋剑春, 徐俊明, 贺小亮. 生物质加压液化制备甲基糖苷与酚类物质[J]. 燃料化学学报, 2014, 42(4): 434-442.(FENG Jun-feng, JIANG Jian-chun, XU Jun-ming, HE Xiao-liang. Preparation of methyl glucosides and phenols through the liquefaction of biomass with methanol under high pressure[J]. J Fuel Chem Technol, 2014, 42(4): 434-442.)
    SERGEEV A G, HARTWIG J F. Selective, nickel-catalyzed hydrogenolysis of aryl ethers[J]. Science, 2011, 332(6028): 439-443.
    HU L H, ZHOU Y H, LIU R J, ZHANG M. Progress of production of phenolic compounds via oxidative degradtion of lignin[J]. Biom Chem Eng, 2012, 46(1): 23-33.
    ZAKZESKI J, BRUIJNINSTBZ P C, JONGERIUS A L, WECKHUYSEN B M. The catalytic valorization of lignin for the production of renewable chemicals[J]. Chem Rev, 2010, 110(6): 3552-3599.
    于玉肖, 徐莹, 王铁军, 马隆龙, 张琦, 张兴华, 张雪. 木质素降解模型化合物愈创木酚及苯酚原位加氢制备环己醇[J]. 燃料化学学报, 2013, 41(04): 443-448.(YU Yu-xiao, XU Ying, WANG Tie-jun, MA Long-long, ZHANG Qi, ZHANG Xing-hua, ZHANG Xue. In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol[J]. J Fuel Chem Technol, 2013, 41(4): 443-447.)
    ZHAO C, KOU Y, LEMONIDOU A A, LI X, LERCHER J A. Highly selective catalytic conversion of phenolic bio-oil to alkanes[J]. Angew Chem Int Ed, 2009, 121(22): 4047-4050.
    MEYLEMANS H A, GROSHENS T J, HARVEY B G. Synthesis of renewable bisphenols from creosol[J]. ChemSusChem 2012, 5(1): 206-210.
    ZHAO C, LERCHER J A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions[J]. Angew Chem Int Ed, 2012, 124(24): 6037-6042.
    ZHAO C, HE J, LEMONIDOU A A, LI X, LERCHER J A. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes[J]. J Catal, 2011, 280(1): 8-16.
    WANG X, RINALDI R. Exploiting H-transfer reactions with RANEY® Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions[J]. Energy Environ Sci, 2012, 5(8): 8244-8260.
    NOUAILHAS H, AOUF C, LE GUERNEVE C, CAILLOL S, BOUTEVIN B, FULCRAND H. Synthesis and properties of biobased epoxy resins. Part 1. Glycidylation of flavonoids by epichlorohydrin[J]. J Polym Sci Part A: Polym Chem, 2011, 49(10): 2261-2270.
    HUANG Y B, YANG Z, DAI J J, GUO Q X, FU Y. Production of high quality fuels from lignocellulose-derived chemicals: a convenient C-C bond formation of furfural, 5-methylfurfural and aromatic aldehyde[J]. RSC Adv, 2012, 2(30): 11211-11214.
    YADAV G D, KIRTHIVASAN N. Synthesis of bisphenol-A: Comparison of efficacy of ion exchange resin catalysts vis-à-vis heteropolyacid supported on clay and kinetic modelling[J]. Appl Catal A: Gen, 1997, 154(1): 29-53.
  • 加载中
计量
  • 文章访问数:  509
  • HTML全文浏览量:  39
  • PDF下载量:  597
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-30
  • 修回日期:  2014-09-27
  • 刊出日期:  2015-01-30

目录

    /

    返回文章
    返回