留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃煤烟气中共存杂质对膜分离CO2性能影响的实验研究

王霞 陈浩 瞿如敏 张琳 杨林军

王霞, 陈浩, 瞿如敏, 张琳, 杨林军. 燃煤烟气中共存杂质对膜分离CO2性能影响的实验研究[J]. 燃料化学学报(中英文), 2015, 43(01): 100-107.
引用本文: 王霞, 陈浩, 瞿如敏, 张琳, 杨林军. 燃煤烟气中共存杂质对膜分离CO2性能影响的实验研究[J]. 燃料化学学报(中英文), 2015, 43(01): 100-107.
WANG Xia, CHEN Hao, QU Ru-min, ZHANG Lin, YANG Lin-jun. Effects of the coexistent impurities in the flue gas on CO2 separation by membranes[J]. Journal of Fuel Chemistry and Technology, 2015, 43(01): 100-107.
Citation: WANG Xia, CHEN Hao, QU Ru-min, ZHANG Lin, YANG Lin-jun. Effects of the coexistent impurities in the flue gas on CO2 separation by membranes[J]. Journal of Fuel Chemistry and Technology, 2015, 43(01): 100-107.

燃煤烟气中共存杂质对膜分离CO2性能影响的实验研究

基金项目: 国家自然科学基金(51176034).
详细信息
    通讯作者:

    杨林军,E-mail:ylj@seu.edu.cn.

  • 中图分类号: TQ028.8

Effects of the coexistent impurities in the flue gas on CO2 separation by membranes

  • 摘要: 利用自行搭建的膜分离实验台,考察了共存气态组分以及颗粒物对于聚二甲基硅氧烷/聚砜(PDMS-PSF)复合膜分离CO2性能的影响.结果表明,共存气态组分中O2对于膜分离CO2有抑制作用;由于SO2浓度显著低于CO2,在短时间内对膜分离CO2没影响;水汽可以促进CO2的分离;燃煤飞灰细颗粒在分离膜表面沉积会导致膜性能的恶化.在此基础上,采用模拟湿法烟气脱硫系统装置,进行了燃煤湿法脱硫净烟气环境下的膜分离CO2实验;在测试的50 h以内,水汽、SO2和O2的共同作用导致膜分离性能在前期有一定的提高,随着运行时间的延长,细颗粒物对膜的影响程度加大,导致PDMS-PSF复合膜的分离性能逐渐恶化,最终导致膜的CO2/N2分离因子和CO2渗透速率分别下降了17.91%和28.21%.
  • 刘之琳, 滕阳, 张锴, 曹晏, 潘伟平. 不同有机胺修饰MCM-41的CO2吸附性能和热稳定性[J]. 燃料化学学报, 2013, 41(4): 469-476.(LIU Zhi-lin, TENG Yang, ZHANG Kai, CAO Yan, PAN Wei-ping. CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials[J]. J Fuel Chem Technol, 2013, 41(4): 469-476.)
    LOW B T, ZHAO L, MERKEL T C, WEBER M, STOLTEN D. A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas[J]. J Membr Sci, 2013, 431: 139-155.
    谭喆, 周勇, 高从堦. 优先渗透CO2的膜材料研究进展[J]. 膜科学与技术, 2014, 34(1): 121-128.(TAN Zhe, ZHOU Yong, GAO Cong-jie. Progress of research on membrane materials for CO2-selective separation[J]. Membr Sci Technol, 2014, 34(1): 121-128.)
    AHMAD F, LAU K K, SHARIFF A M, MURSHID G. Process simulation and optimal design of membrane separation system for CO2 capture from natural gas[J]. Comput Chem Eng, 2012, 36: 119-128.
    ISMAIL A F, YAACOB N. Performance of treated and untreated asymmetric polysulfone hollow fiber membrane in series and cascade module configurations for CO2/CH4 gas separation system[J]. J Membr Sci, 2006, 275(1): 151-165.
    马莎莎, 陈泽智, 龚慧娟, 虞辉, 余珉, 王梦秋, 樊杨梅. 聚壳糖/聚砜复合中空纤维膜的制备及其CO2/N2分离性能研究[J]. 现代化工, 2013, 33(6): 50-53.(MA Sha-sha, CHEN Ze-zhi, GONG Hui-juan, YU Hui, YU Min, WANG Meng-qiu, FAN Yang-mei. Preparation of chitosan/polysulfon hollow fiber composite membranes and its CO2/N2 permeation properties[J]. Mod Chem Ind, 2013, 33(6): 50-53.)
    PAKIZEH M, MANSOORI S A A, CHENAR M P, MAHBOUB M N. Modification of PSf membrane nanostructure using different fabrication parameters and investigation of the CO2 separation properties of PDMS-coated PSf composite membranes[J]. Braz J Chem Eng, 2013, 30(2): 345-354.
    THUNDYIL M J, JOIS Y H, KOROS W J. Effect of permeate pressure on the mixed gas permeation of carbon dioxide and methane in a glassy polyimide[J]. J Membr Sci, 1999, 152(1): 29-40.
    SCHOLES C A, STEVENS G W, KENTISH S E. Permeation through CO2 selective glassy polymeric membranes in the presence of hydrogen sulfide[J]. AlChE J, 2012, 58(3): 967-973.
    SCHOLES C A, KENTISH S E, STEVENS G W. The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture[J]. Energy Procedia, 2009, 1(1): 311-317.
    KIM T J, UDDIN M W, SANDRU M, HÄGG M B. The effect of contaminants on the composite membranes for CO2 separation and challenges in up-scaling of the membranes[J]. Energy Procedia, 2011, 4: 737-744.
    ANDERSON C J, TAO W, SCHOLES C A, STEVENS G W, KENTISH S E. The performance of carbon membranes in the presence of condensable and non-condensable impurities[J]. J Membr Sci, 2011, 378(1/2): 117-127.
    BRANDS K, UHLMANN D, SMART S, BRAM M, DINIZ DA COSTA J C. Long-term flue gas exposure effects of silica membranes on porous steel substrate[J]. J Membr Sci, 2010, 359(1): 110-114.
    BRAM M, BRANDS K, DEMEUSY T, ZHAO L, MEULENBERG W A, PAULS J, GÖTTLICHER G, PEINEMANN K V, SMART S, BUCHKREMER H P, STÖVER D. Testing of nanostructured gas separation membranes in the flue gas of a post-combustion power plant[J]. Int J Greenh Gas Control, 2011, 5(1): 37-48.
    王学松. 气体膜技术[M]. 北京: 化学工业出版社, 2010.(WANG Xue-song. Membrane technologies for gas separation[M]. Beijing: Chemical Industry Press, 2010.)
    SCHOLES C A, KENTISH S E, STEVENS G W. Effects of minor components in carbon dioxide capture using polymerics gas separation membranes[J]. Sep Purif Rev, 2009, 38(1): 1-44.
    陈勇, 王从厚, 吴鸣. 气体膜分离技术与应用[M]. 北京: 化学工业出版社, 2004.(CHEN Yong, WANG Cong-hou, WU Ming. Membrane technologies and applications for gas separation[M]. Beijing: Chemical Industry Press, 2004.)
    何宏舟, 骆仲泱, 王勤辉, 岑可法. 燃烧福建无烟煤的循环流化床锅炉飞灰及其未燃炭分析[J]. 燃料化学学报, 2006, 34(3): 285-291.(HE Hong-zhou, LUO Zhong-yang, WANG Qin-hui, CEN Ke-fa. Characterization of fly ash and unburned carbon from CFB boiler with burning Fujian anthracite[J]. J Fuel Chem Technol, 2006, 34(3): 285-291.)
    殷立宝, 高正阳, 徐齐胜, 郑双清, 钟俊, 陈传敏. 燃煤电站锅炉颗粒Hg形态及其释放动力学参数[J]. 燃料化学学报, 2013, 41(12): 1451-1458.(YIN Li-bao, GAO Zheng-yang, XU Qi-sheng, ZHENG Shuang-qing, ZHONG Jun, CHEN Chuan-min. Analysis of species and thermal stability of particulate-bound mercury in coal-fired boiler[J]. J Fuel Chem Technol, 2013, 41(12): 1451-1458.)
  • 加载中
计量
  • 文章访问数:  389
  • HTML全文浏览量:  46
  • PDF下载量:  454
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-21
  • 修回日期:  2014-09-24
  • 刊出日期:  2015-01-30

目录

    /

    返回文章
    返回