留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焦炭与CO2和水蒸气气化后孔隙结构和高温抗压强度研究

郭文涛 王静松 佘雪峰 薛庆国 郭占成

郭文涛, 王静松, 佘雪峰, 薛庆国, 郭占成. 焦炭与CO2和水蒸气气化后孔隙结构和高温抗压强度研究[J]. 燃料化学学报(中英文), 2015, 43(06): 654-662.
引用本文: 郭文涛, 王静松, 佘雪峰, 薛庆国, 郭占成. 焦炭与CO2和水蒸气气化后孔隙结构和高温抗压强度研究[J]. 燃料化学学报(中英文), 2015, 43(06): 654-662.
GUO Wen-tao, WANG Jing-song, SHE Xue-feng, XUE Qing-guo, GUO Zhan-cheng. Pore structure and high-temperature compressive strength of gasified coke with CO2 and steam[J]. Journal of Fuel Chemistry and Technology, 2015, 43(06): 654-662.
Citation: GUO Wen-tao, WANG Jing-song, SHE Xue-feng, XUE Qing-guo, GUO Zhan-cheng. Pore structure and high-temperature compressive strength of gasified coke with CO2 and steam[J]. Journal of Fuel Chemistry and Technology, 2015, 43(06): 654-662.

焦炭与CO2和水蒸气气化后孔隙结构和高温抗压强度研究

基金项目: 国家自然科学基金重点项目(51234001);国家自然科学基金委员会与宝钢集团有限公司联合资助项目(51134008)。
详细信息
    通讯作者:

    薛庆国,Tel:010-62332208,E-mail:xueqingguo@ustb.edu.cn。

  • 中图分类号: TF526+.1

Pore structure and high-temperature compressive strength of gasified coke with CO2 and steam

  • 摘要: 通过焦炭气化反应装置和高温抗压强度测定装置,研究了焦炭与CO2和水蒸气气化后孔隙结构变化规律及溶损率、温度和孔隙结构对焦炭高温抗压强度的影响。结果表明,与CO2气化相比,水蒸气气化后焦炭平均孔径较小,比表面积和100 μm以下气孔数量增加,且整体高温抗压强度更高。焦炭气化后高温抗压强度随溶损率增加而降低,随温度升高而降低。温度为1 200 ℃时,随溶损率增加压缩过程焦炭承受压缩功(WOCu)逐渐降低,水蒸气气化后的WOCu高于CO2条件,随溶损率增加焦炭压缩过程形变量呈降低趋势。在相同溶损率下,水蒸气气化后焦炭的孔隙结构对焦炭强度损害相对较小,抗变形能力更强。
  • SHEN F L, GUPTA S, LIU Y. Effect of reaction conditions on coke tumbling strength carbon structure and mineralogy[J]. Fuel, 2013, 111(92): 223-228.
    HERIBERT B. Coal and coke for blast furnaces[J]. ISIJ Int, 1999, 39(7): 617-624.
    UJISAWA Y, NAKANO K, MATSUKURA Y, SUNAHARA K. Subjects for achievement of blast furnace operation with low reducing agent rate[J]. Tetsu to Hagane, 2006, 92(12): 1015-1021.
    ARIYAMA T, SATO M. Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works[J]. ISIJ Int, 2006, 46(12): 1736-1444.
    KUNDRAT D M, MIWA T, RIST A. Injections in the iron blast furnace a graphics study by means of the rist operating diagram[J]. Metall Mater Trans B, 1991, 22(3): 363-383.
    DANLOY G, BERTHELEMOT A, GRANT M. ULCOS-Pilot testing of the low-CO2 blast furnace process at the experimental BF in lulea[J]. Rev Métall, 2009, (1): 1-8.
    FINK F. Suspension smelting reduction: Aew method of hot iron production[J]. Steel Times, 1996, 224(11): 398-399.
    QIN M S, GAO Z K, WANG G L. Blast furnace operation with full oxygen blast[J]. Iron Steel, 1988, 15(6): 287-292.
    KASHIWAYA Y, ISHII K. The kinds of reactions in coke gasification by H2O[J]. Tetsu to Hagane, 1993, 79(12): 1305-1310.
    李家新, 汪涧江, 王平, 卢开成. H2O-CO2混合气体对焦炭劣化反应的影响[J]. 安徽工业大学学报, 2008, 25(3): 233-236. (LI Jia-xin, WANG Jian-ping, WANG Ping, LU Kai-cheng. Influence of H2O-CO2 gas mixture on coke degradation[J]. J Anhui Univ Technol, 2008, 25(3): 233-236.)
    TAKATANI K, IWANAGA Y. Rate analysis of gasification of metallurgical coke with CO2 and H2O[J]. Tetsu to Hagane, 1989, 75(4): 594-601.
    李绍锋, 吴诗勇. 高温下煤焦的碳微晶及孔结构的演变行为[J]. 燃料化学学报, 2010, 38(5): 513-517. (LI Shao-feng, WU Shi-yong. Evolvement behavior of carbonm inicrystal and pore structure of coal chars at high temperatures[J]. J Fuel Chem Technol, 2010, 38(5): 513-517.)
    张林仙, 黄戒介, 房倚天, 王洋. 中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[J]. 燃料化学学报, 2006, 34(3): 265-269. (ZHANG Lin-xian, HUANG Jie-jie, FANG Yi-tian, WANG Yan. Study on reactivity of Chinese anthracite chars gasification-comparison of reactivity between steam and CO2 gasificaiton[J]. J Fuel Chem Technol, 2006, 34(3): 265-269.)
    NORIO H, MOTOTSUGU S, SEIJI N. Failure strength of cokes reacted with CO2[J]. Tetsu to Hagane, 2010, 96(5): 305-312.
    SAKAI M, NISHIMURA R, NISHIMURA M. Failure strength of metallurgical coke-An approach from materials mechanics[J]. Tetsu to Hagane, 2006, 92(3): 164-170.
    方觉, 王兴艳, 郭丽, 邵剑华. 焦炭高温抗压强度研究[J]. 钢铁, 2006, 41(5): 20-23. (FANG Jue, WANG Xing-yan, GUO Li, SHAO Jian-hua. Research on high temperature compression strength of coke[J]. Iron and Steel, 2006, 41(5): 20-23.)
    YAMAZAKI Y, HAYASHIZAKI H, UEOKA K. The effect of variation of the coke microstructure with addition of iron ore on the tensile strength of ferrous coke[J]. Tetsu to Hagane, 2010, 96(9): 536-544.
    YAMAMOTO T, HANAOKA K, SAKAMOTO S. Effect of coke pore structure on coke tensile strength before/after CO2 reaction and surface-breakage strength[J]. Tetsu to Hagane, 2006, 92(3): 206-212.
    付志新, 郭占成. 焦化过程半焦孔隙结构时空变化规律的实验研究-孔隙率, 比表面积, 孔径分布的变化[J]. 燃料化学学报, 2007, 35(7): 273-279. (FU Zhi-xin, GUO Zhan-cheng. Variation of pore structure of semi-coke with temperature and spatial location during pyrolysis-Porosity, specific surface area and pore size distribution[J]. J Fuel Chem Technol, 2007, 35(7): 273-279.)
    BARRANCO R, PATRICK J, SNAPE C, THOMPSON A. Impact of low-cost filler material on coke quality[J]. Fuel, 2007, 86(14): 2179-2185.
    GUPTA S, DUBIKOVA M, FRENCH D. Effect of CO2 gasification on the transformations of coke minerals at high temperatures[J]. Energy Fuels, 2007, 21(2): 1052-1061.
  • 加载中
计量
  • 文章访问数:  413
  • HTML全文浏览量:  18
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-24
  • 修回日期:  2015-03-10
  • 刊出日期:  2015-06-30

目录

    /

    返回文章
    返回