留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒粒径对油页岩热解产油率的影响

畅志兵 初茉 张超 王文涓 曲洋

畅志兵, 初茉, 张超, 王文涓, 曲洋. 颗粒粒径对油页岩热解产油率的影响[J]. 燃料化学学报(中英文), 2015, 43(06): 663-668.
引用本文: 畅志兵, 初茉, 张超, 王文涓, 曲洋. 颗粒粒径对油页岩热解产油率的影响[J]. 燃料化学学报(中英文), 2015, 43(06): 663-668.
CHANG Zhi-bing, CHU Mo, ZHANG Chao, WANG Wen-juan, QU Yang. Influence of particle size on oil yield from pyrolysis of oil shale[J]. Journal of Fuel Chemistry and Technology, 2015, 43(06): 663-668.
Citation: CHANG Zhi-bing, CHU Mo, ZHANG Chao, WANG Wen-juan, QU Yang. Influence of particle size on oil yield from pyrolysis of oil shale[J]. Journal of Fuel Chemistry and Technology, 2015, 43(06): 663-668.

颗粒粒径对油页岩热解产油率的影响

基金项目: 国家重点基础研究发展规划(973计划,2014CB744301)。
详细信息
    通讯作者:

    初茉(1966-),女,内蒙古呼和浩特人,教授(博士)。研究方向:油页岩热解加工利用,低阶煤提质。Tel:010-62331863,E-mail:cm@cumtb.edu.cn。

  • 中图分类号: TQ534

Influence of particle size on oil yield from pyrolysis of oil shale

  • 摘要: 以桦甸油页岩为原料研究了颗粒粒径对油页岩热解产油率的影响。将油页岩破碎、筛分得到<0.074、0.074~0.125、0.125~0.25、0.25~0.5、0.5~1和1~3 mm不同粒级样品,再将0.25~0.5、0.5~1和1~3 mm大粒级样品粉碎制得对应的细粉样品,采用低温干馏法和热重分析分别测定表征样品的油产率和有机质含量。结果表明,油产率随着粒径减小逐渐降低,从1~3 mm下的11.92%降到<0.074 mm下的6.14%。热重分析表明,有机质含量随着粒径降低而降低,且油产率与有机质含量有明显的线性关系。0.25~0.5、0.5~1和1~3 mm样品经粉碎后油产率降低、气产率升高,但变化值均小于1%。在破碎过程中有机质选择性地富集在大粒级样品中,且页岩油二次反应程度随着粒径的减小而增大,使得页岩油产率随着粒径的降低而降低,且有机质选择性富集是主导因素。
  • 刘招君, 董清水, 叶松青, 朱建伟, 郭巍, 李殿超, 柳蓉, 张海龙, 杜江峰. 中国油页岩资源现状[J]. 吉林大学学报 (地球科学版), 2006, 36(6): 869-876. (LIU Zhao-jun, DONG Qing-shui, YE Song-qing, ZHU Jian-wei, GUO Wei, LI Dian-chao, LIU Rong, ZHANG Hai-long, DU Jiang-feng. The situation of oil shale resources in China[J]. J Jilin Univ (Earth Sci Ed), 2006, 36(6): 869-876.)
    AHMAD N, WILLIAMS P T. Influence of particle grain size on the yield and composition of products from the pyrolysis of oil shales[J]. J Anal Appl Pyrolysis, 1998, 46(1): 31-49.
    NAZZAL J M. The influence of grain size on the products yield and shale oil composition from pyrolysis of Sultani oil shale[J]. Energy Convers Manage, 2008, 49(11): 3278-3286.
    孙保民, 王恭, 朱明亮, 张立栋, 刘朝青, 张进玺. 不同粒径分布条件下桦甸油页岩颗粒特性实验研究[J].华北电力大学学报 (自然科学版), 2013, 40(1): 98-102. (SUN Bao-min, WANG Gong, ZHU Ming-ling, ZHANG Li-dong, LIU Chao-qing, ZHANG Jin-xi. Experimental research for the oil shale particle characteristic under different size distribution[J]. J North China Electr Power Univ (Nat Sci Ed), 2013, 40(1): 98-102.)
    RUBEL A M, DAVIS E. The effect of shale particle size on the products from the bench scale fixed bed pyrolysis of Kentucky Sunbury shale[C]//1985 eastern oil shale symposium. Lexington: Kentucky Energy Cabinet, 1985, 43.
    马海燕, 申云生, 张悦华, 刘井杰, 曹祖宾. 桦甸油页岩低温干馏影响因素研究[J]. 石化技术与应用, 2010, 28(2): 109-112. (MA Hai-yan, SHEN Yun-sheng, ZHANG Yue-hua, LIU Jing-jie, CAO Zu-bin. Research of factors on low-temperature dry distillation of Huadian oil shale[J]. Petrochem Technol Appl, 2010, 28(2): 109-112.)
    孙佰仲, 王擎, 姜庆贤, 柏静儒, 孙键. 油页岩含油率的测定及其影响因素分析[J]. 东北电力大学学报, 2006, 26(1): 13-16. (SUN Bai-zhong, WANG Qing, JIANG Qing-xian, BAI Jing-ru, SUN Jian. Determination of oil yield of Huadian oil shales by Fischer Assay analysis[J]. J Northeast Dianli Univ, 2006, 26(1): 13-16.)
    史文权. 苏尼特油页岩低温干馏影响因素考察[J]. 煤, 2013, (165): 20-21. (SHI Wen-quan. Factor influence of Sunith oil shale low temperature dry distillation[J]. Coal, 2013, (165): 20-21.)
    于海龙, 姜秀民. 桦甸油页岩热解特性的研究[J]. 燃料化学学报, 2001, 29(5): 450-453. (YU Hai-long, JIANG Xiu-min. Study of pyrolysis property of Huadian oil shale[J]. J Fuel Chem Technol, 2001, 29(5): 450-453.)
    JEONG G N, CHEOL H I, SOO H C, KI B L. Effect of oil shale retorting temperature on shale oil yield and properties[J]. Fuel, 2012, 95: 131-135.
    马跃, 李术元, 王娟, 方朝合. 水介质条件下油页岩热解机理研究[J]. 燃料化学学报, 2011, 39(12): 881-886. (MA Yue, LI Shu-yuan, WANG Juan, FANG Chao-he. Mechanism of oil shale pyrolysis under high pressure water[J]. J Fuel Chem Technol, 2011, 39(12): 881-886.)
    HUTTON A, BHARATI S, ROBL T. Chemical and petrographic classification of Kerogen/Macerals[J]. Energy Fuels, 1994, (8): 1478-1488.
    常松, 初茉, 曹文翰, 王博. 煤直接液化残渣热解气体析出规律研究[J]. 洁净煤技术, 2014, 20(2): 84-86. (CHANG Song, CHU Mo, CAO Wen-han, WANG Bo. Precipitated rule of gas from direct liquefaction residue pyrolysis[J]. Clean Coal Technol, 2014, 20(2): 84-86.)
    JABER J O, PROBERT S D. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions[J]. Fuel Process Technol, 2000, 63(1): 57-70.
    BHARGAVA S, AWAJA F, SUBASINGHE N D. Characterisation of some Australian oil shale using thermal, X-Ray and IR techniques[J]. Fuel, 2005, 84(6): 707-715.
    CARTER S D, TAULBEE D N. Fluidized bed steam retorting of Kentucky oil shale[J]. Fuel Process Technol, 1985, 11(3): 251-272.
    DUNG N V, WALL G C, KASTL G. Continuous fluidized bed retorting of Condor and Stuart oil shales in a 150 mm diameter reactor[J]. Fuel, 1987, 66(3): 372-376.
    DUNG N V. Pyrolysis of Stuart oil shale in the presence of recycled shale[J]. Fuel, 1990, 69(4): 497-501.
    FOOKES C J R, DUFFY G J, UDAJA P, CHENSEE M D. Mechanisms of thermal alteration of shale oils[J]. Fuel, 1990, 69(9): 1142-1144.
    UDAJA P, DUFFY G J, CHENSEE M D. Coking reactivities of Australian shale oils[J]. Fuel, 1990, 69(9): 1150-1154.
    TAULBEE D N, CARTER S D. Characterization of liquid and gaseous products from the KENTORT II integrated retort/ gasifier: 2. Comparison of gasification and combustion modes of operation[J]. Fuel, 1991, 70(11): 1245-1251.
    CARTER S D, CITIROGLU M, GALLACHER J, SNAPE C E, MITCHELL S, LAFFERTY C J. Secondary coking and cracking of shale oil vapours from pyrolysis or hydropyrolysis of a Kentucky Cleveland oil shale in a two-stage reactor[J]. Fuel, 1994, 73(9): 1455-1458.
  • 加载中
计量
  • 文章访问数:  401
  • HTML全文浏览量:  24
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-26
  • 修回日期:  2015-03-02
  • 刊出日期:  2015-06-30

目录

    /

    返回文章
    返回