留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电极面积对老龄垃圾渗滤液为底物的微生物燃料电池性能影响

程李钰 徐龙君

程李钰, 徐龙君. 电极面积对老龄垃圾渗滤液为底物的微生物燃料电池性能影响[J]. 燃料化学学报(中英文), 2015, 43(08): 1011-1017.
引用本文: 程李钰, 徐龙君. 电极面积对老龄垃圾渗滤液为底物的微生物燃料电池性能影响[J]. 燃料化学学报(中英文), 2015, 43(08): 1011-1017.
CHENG Li-yu, XU Long-jun. Effects of electrode surface area on the performance of microbial fuel cells with the aging landfill leachate as substrate[J]. Journal of Fuel Chemistry and Technology, 2015, 43(08): 1011-1017.
Citation: CHENG Li-yu, XU Long-jun. Effects of electrode surface area on the performance of microbial fuel cells with the aging landfill leachate as substrate[J]. Journal of Fuel Chemistry and Technology, 2015, 43(08): 1011-1017.

电极面积对老龄垃圾渗滤液为底物的微生物燃料电池性能影响

基金项目: 重庆市基础与前沿研究计划重点项目(CSTC,2013jjB20001)。
详细信息
    通讯作者:

    徐龙君(1963-),教授,主要从事安全科学与工程、环境科学与工程等方面的教学与科研工作;E-mail:xulj@cqu.edu.cn。

  • 中图分类号: TK6

Effects of electrode surface area on the performance of microbial fuel cells with the aging landfill leachate as substrate

  • 摘要: 构建生物阴极型双室微生物燃料电池,处理老龄垃圾渗滤液。研究了阳极与阴极面积比值对微生物燃料电池产电能力和对老龄垃圾渗滤液处理效果的影响。结果表明,阳极与阴极面积比为1:2、2:2、2:1的3组生物阴极型微生物燃料电池输出电压分别为408、452、396mV,最大电功率密度分别为145.73、237.65、136.50mW/m3,内阻分别为350、200、400Ω,COD的去除率分别为21.18%、20.20%、22.31%。3组微生物燃料电池运行30d后,垃圾渗滤液中氨氮、硝酸盐氮、亚硝酸盐氮浓度均下降,其中,氨氮去除率分别为80.88%、73.61%和66.17%,其去除效果与产电性能相关。
  • SEVDA S, DOMINGUEZ-BENETTON X, VANBROEKHOVEN K, DE WEVER W, SREKRISHNAN T R, PANT D. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell[J]. Appl Energy, 2013, 105: 194-206.
    WANG H, JIANG S C, WANG Y, XIAO B. Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater[J]. Bioresour Technol, 2013, 138: 109-116.
    LIEW K B, DAUD W R W, GHASEMI M, LEONG J X, LIM S S, ISMAIL M. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review[J]. Int J Hydrogen Energy, 2014, 39(10): 4870-4883.
    LIU S, SONG H, WEI S, YANG F, LI X. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland-Microbial fuel cell systems [J]. Bioresour Technol, 2014, 166: 575-583.
    ZHANG H, ZHANG R, ZHANG G, YANG F, GAO F. Modified graphite electrode by polyaniline tourmaline improves the performance of bio-cathode microbial fuel cell [J]. Int J Hydrogen Energy, 2014, 39(21): 11250-11257.
    MANSOORIAN H J, MAHVI A H, JAFARI A J. Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing[J]. Enzyme Microb Technol, 2013, 52(6/7): 352-357.
    KIM J, KIM B, KIM H, YUN Z. Effects of ammonium ions from the anolyte within bio-cathode microbial fuel cells on nitrate reduction and current density[J]. Int Biodeterior Biodegrad, 2014, 95(Part A): 122-126.
    CHEN L, XIAO Y, ZHAO F. Biocathodes in microbial fuel cells[J]. Prog Chem, 2012, 24: 157-162.
    ALATRAKTCHI F A, ZHANG Y, SAFAA NOORI J, ANGELIDAKI I. Surface area expansion of electrodes with grass-like nanostructures and gold nanoparticles to enhance electricity generation in microbial fuel cells[J]. Bioresour Technol, 2012, 123: 177-183.
    SACCO N J, FIGUEROLA E L M, PATACCINI G, BONETTO M C, ERIJMAN L, CORTON E. Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells[J]. Bioresour Technol, 2012, 126: 328-335.
    GHANGREKAR M M, SHINDE V B. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production[J]. Bioresour Technol, 2007, 98(15): 2879-2885.
    王艳芳, 刘百仓, 郑哲, 郑雪艳. 电极面积和电极间距对立方体型MFCs产电能力的影响[J]. 可再生能源, 2013, 31(3): 68-74. (WANG Yan-fang, LIU Bai-cang, ZHENG Zhe, ZHENG Xue-yan. Effects of the electrode area and electrode spacing on the electricity generation capacity of MFCs[J]. Renew Energy, 2013, 31(3): 68-74.)
    ZHANG Q, TIAN B, ZHANG X, GHULAM A, FANG C, HE R. Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants[J]. Waste Manage, 2013, 33(11): 2277-2286.
    GANESH K, JAMBECK J. Treatment of landfill leachate using microbial fuel cells: Alternative anodes and semi-continuous operation[J]. Bioresour Technol, 2013, 139: 383-387.
    樊立萍, 苗晓慧. 微生物燃料电池处理餐饮废水及同步发电性能研究[J]. 燃料化学学报, 2014, 42(12): 1506-1512. (FAN Li-ping, MIAO Xiao-hui. Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation[J]. J Fuel Chem Technol, 2014, 42(12): 1506-1512.)
    荆淇. 生物阴极MFC处理垃圾渗滤液基础研究. 重庆: 重庆大学, 2014. (JIN Qi. Treatment of landfill leachate by biocathode microbial fuel cell. Chongqing: Chongqing University, 2014.)
    国家环境保护总局. 水和废水监测分析方法[M]. 第四版. 北京:中国环境科学出版社, 2012. (State Environmental Protection Administration. Determination methods for examination of water and wastewater[M]. 4th ed. Beijing: China Environmental Science Press, 2012.)
    WANG Z, ZHENG Y, XIAO Y, WU S, WU Y, YANG Z, ZHAO F. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells[J]. Bioresour Technol, 2013, 144: 74-79.
    LOGAN B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nat Rev Microbiol, 2009, 7: 375-381.
    CLAUWAERT P, VAN DER HA D, BOON N, VERBEKEN K, VERHAEGE M, RABAEY K, VERSTRAETE W. Open air biocathode enables effective electricity generation with microbial fuel cells[J]. Environ Sci Technol, 2007, 41(21): 7564-7569.
    ZHANG X, HE W, REN L, STAGER J, EVAN P J, LOGAN B E. COD removal characteristics in air-cathode microbial fuel cells[J]. Bioresour Technol, 2015, 176: 23-31.
    ZHANG X, ZHU F, CHEN L, ZHAO Q, TAO G. Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell[J]. Bioresour Technol, 2013, 146: 161-168.
  • 加载中
计量
  • 文章访问数:  329
  • HTML全文浏览量:  18
  • PDF下载量:  365
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-02
  • 修回日期:  2015-04-08
  • 刊出日期:  2015-08-30

目录

    /

    返回文章
    返回