留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制备方法对MnOx鄄TiO2吸附剂脱汞及抗硫性能的影响

张安超 张志会 石金明 陈国艳 周长松 孙路石

张安超, 张志会, 石金明, 陈国艳, 周长松, 孙路石. 制备方法对MnOx鄄TiO2吸附剂脱汞及抗硫性能的影响[J]. 燃料化学学报(中英文), 2015, 43(10): 1258-1266.
引用本文: 张安超, 张志会, 石金明, 陈国艳, 周长松, 孙路石. 制备方法对MnOx鄄TiO2吸附剂脱汞及抗硫性能的影响[J]. 燃料化学学报(中英文), 2015, 43(10): 1258-1266.
ZHANG An-chao, ZHANG Zhi-hui, SHI Jin-ming, CHEN Guo-yan, ZHOU Chang-song, SUN Lu-shi. Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance[J]. Journal of Fuel Chemistry and Technology, 2015, 43(10): 1258-1266.
Citation: ZHANG An-chao, ZHANG Zhi-hui, SHI Jin-ming, CHEN Guo-yan, ZHOU Chang-song, SUN Lu-shi. Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance[J]. Journal of Fuel Chemistry and Technology, 2015, 43(10): 1258-1266.

制备方法对MnOx鄄TiO2吸附剂脱汞及抗硫性能的影响

基金项目: 国家自然科学基金(51306046,51166004,51376073)和河南省高校基本科研业务费(NSFRF140204)
详细信息
    通讯作者:

    张安超,Tel:15039126550,E-mail:anchaozhang@126.com.

  • 中图分类号: X511

Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance

Funds: The project was supported by the National Natural Science Foundation of China (51306046, 51166004, 51376073), the Fundamental Research Funds for the Universities of Henan Province (NSFRF140204).
  • 摘要: 针对燃煤烟气中单质汞(Hg0)不溶于水很难去除和锰基吸附剂抗硫能力差的问题,以浸渍法、溶胶鄄凝胶法和沉积鄄沉淀法等三种方法制备MnOx 鄄TiO2 为吸附剂,在固定床实验台架上考察了制备方法对MnOx 鄄TiO2 吸附剂Hg0 吸附量和抗硫性能的影响;利用N2 吸附/ 脱附、TG鄄DSC、XRD、TEM、H2鄄TPR 和XPS 等手段对吸附剂进行表征。结果表明,制备方法对MnOx 鄄TiO2 吸附剂的脱汞活性影响颇大;沉积鄄沉淀法制备的MnOx 鄄TiO2 吸附剂具有较高的Hg0 吸附量和抗硫能力。吸附剂的BET 比表面积高低与其脱汞活性无直接相关性;与浸渍法和溶胶鄄凝胶法相比,沉积鄄沉淀法制备的MnOx 鄄TiO2 吸附剂不但可以增强其还原性和MnOx分散度,而且还会显著提高吸附剂表面Mn4+/Mn 的比率和表面化学吸附态氧含量,进而增强吸附剂的脱汞活性和抗硫性能。
  • XU W Q, WANG H R, ZHU T Y, KUANG J Y, JING P F. Mercury removal from coal combustion flue gas by modified fly ash[J]. J Environ Sci, 2013, 25(2): 393-398.
    UDDIN M A, YAMADA T, OCHIAI R. Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon[J]. Energy Fuels, 2008, 22(4): 2284-2289.
    GRANITE E J, PENNLINE H W, HARGIS R A. Novel sorbents for mercury removal from flue gas[J]. Ind Eng Chem Res, 2000, 39(4): 1020-1029.
    STREETS D G, HAO J M, WU Y, JIANG J K, CHAN M, TIAN H Z, FENG X B. Anthropogenic mercury emissions in china[J]. Atmos Environ, 2005, 39(40): 7789-7806.
    YANG S J, GUO Y F, YAN N Q, WU D Q, HE, H P, XIE J K, QU Z, JIA J P. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B: Environ, 2011, 101(3/4): 698-708.
    PRESTO A A, GRANITE E J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environ Sci Technol, 2006, 40(18): 5601-5609.
    ZHANG H W, CHEN J T, LIANG P, WANG L. Mercury oxidation and adsorption characteristics of potassium permanganate modified lignite semi-coke[J]. J Environ Sci, 2012, 24(12): 2083-2090.
    MA Y P, XU H M, ZAN Q, YAN N Q, WANG W H. Absorption characteristics of elemental mercury in mercury chloride solutions[J]. J Environ Sci, 2014, 26(11): 2257-2265.
    WU Z B, JIN R B, WANG H Q, LIU Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J]. Catal Commun, 2009, 10(6): 935-939.
    LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009, 93(1/2): 194-204.
    王燕彩, 刘昕, 宁平, 张秋林, 张金辉, 徐利斯, 唐小苏, 王明智. 制备方法对氧化锰八面体分子筛的NH3选择性催化还原NOx性能的影响[J]. 燃料化学学报, 2014, 42(11): 1357-1364.
    (WANG Yan-cai, LIU Xin, NING Ping, ZHANG Qiu-lin, ZHANG Jin-hui, XU Li-si, TANG Xiao-su, WANG Ming-zhi. Effect of preparation methods on selective catalytic reduction of NOx with NH3 over manganese oxide octahedral molecular sieves[J]. J Fuel Chem Technol, 2014, 42(11): 1357-1364.)
    SHEN B X, LIU T, ZHAO N, YANG X Y, DENG L D. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. J Environ Sci, 2010, 22(9): 1447-1454.
    JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. J Hazard Mater, 2009, 162(2/3): 1249-1254.
    张信莉, 王栋, 彭建升, 路春美, 徐丽婷. 煅烧温度对Mn改性γ-Fe2O3催化剂结构及低温SCR脱硝活性的影响[J]. 燃料化学学报, 2015, 43(2): 243-250.
    (ZHANG Xin-li, WANG Dong, PENG Jian-sheng, LU Chun-mei, XU Li-ting. Influence of calcination temperature on structural property of Mn doped γ-Fe2O3 catalysts and low-temperature SCR activity [J]. J Fuel Chem Technol, 2015, 43(2): 243-250.)
    WU Z B, TANG N, XIAO L, LIU Y, WANG H Q. MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation[J]. J Colloid Interf Sci, 2010, 352(1): 143-148.
    QIAO S H, CHEN J, LI J F, QU Z, LIU P, YAN N Q, JIA J P. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/alumina[J]. Ind Eng Chem Res, 2009, 48(7): 3317-3322.
    JI L, SREEKANTH P M, SMIRNIOTIS P G, THIEL S W, PINTO N G. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas[J]. Energy Fuels, 2008, 22(4): 2299-2306.
    XU Y L, ZHONG Q, LIU X Y. Elemental mercury oxidation and adsorption on magnesite powder modied by Mn at low temperature[J]. J Hazard Mater, 2015, 283: 252-259.
    游淑淋, 周劲松, 侯文慧, 孟帅琦, 高翔, 骆仲泱. 锰改性活性焦脱除合成气中单质汞的影响因素[J]. 燃料化学学报, 2014, 42(11): 1324-1331.
    (YOU Shu-lin, ZHOU Jin-song, HOU Wen-hui, MENG Shuai-qi, GAO Xiang, LUO Zhong-yang. Factors influencing the removal of elemental mercury by Mn-AC sorbent in syngas[J]. J Fuel Chem Technol, 2014, 42(11): 1324-1331.)
    LI H L, WU C Y, LI Y, LI L, ZHAO Y C, ZHANG J Y. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature[J]. J Hazard Mater, 2012, 243: 117-123.
    ZHANG A C, ZHENG W W, SONG J, HU S, LIU Z C, XIANG J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chem Eng J, 2014, 236: 29-38.
    LI J W, ZHAO P, LIU S T. SnOx-MnOx-TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation[J]. Appl Catal A: Gen, 2014, 482: 363-369.
    QI G, YANG R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. J Catal, 2003, 217(2): 434-441.
    HUANG H Y, LONG R Q, YANG R T. A highly sulfur resistant Pt-Rh/TiO2/Al2O3 storage catalyst for NOx reduction under lean-rich cycles[J]. Appl Catal B: Environ, 2001, 33(2): 127-136.
    KIJLSTRA W S, BIERVLIET M, POELS E K, BLIEK A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B: Environ, 1998, 16(4): 327-337.
    XU J J, AO Y H, FU D G, YUAN C W. Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light[J]. Appl Surf Sci, 2008, 254(10): 3033-3038.
    ZHANG A C, ZHANG Z H, CHEN J J, SHENG W, SUN L S, XIANG J. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal[J]. Fuel Process Technol, 2015, 135: 25-33.
    KHAN A, SMIRNIOTIS P G. Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction[J]. J Mol Catal A: Chem, 2008, 280(1/2): 43-51.
    KAPTEIJN F, SINGOREDJO L, ANDREINI A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B: Environ, 1994, 3(2/3): 173-189.
    GAO X, JIANG Y, FU Y C, ZHONG Y, LUO Z Y, CEN K F. Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3[J]. Catal Commun, 2010,11(5): 465-469.
    WAN Q, DUAN L, HE K B, LI J H. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J, 2011, 170(2/3): 512-517.
    KARAMI A, SALEHI V. The influence of chromium substitution on an iron-titanium catalyst used in the selective catalytic reduction of NO[J]. J Catal, 2012, 292: 32-43.
    CHEN Z H, WANG F R, LI H, YANG Q, WANG L F, LI X H. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Ind Eng Chem Res, 2012, 51(1): 202-212.
    GAO R H, ZHANG D S, MAITARAD P, SHI L Y, RUNGROTMONGKOL T, LI H R, ZHANG J P, CAO W G. Morphology-dependent properties of MnOx/ZrO2-CeO2 nanostructures for the selective catalytic reduction of NO with NH3[J]. J Phys Chem C, 2013, 117(20): 10502-10511.
    YU D Q, LIU Y, WU Z B. Low-temperature catalytic oxidation of toluene over mesoporous MnOx-CeO2/TiO2 prepared by sol-gel method[J]. Catal Commun, 2010, 11(8): 788-791.
  • 加载中
计量
  • 文章访问数:  484
  • HTML全文浏览量:  52
  • PDF下载量:  395
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-01
  • 修回日期:  2015-08-23
  • 刊出日期:  2015-10-31

目录

    /

    返回文章
    返回