留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

五彩湾煤镜质组与惰质组在热解中的相互作用

杨群 常海洲 杜帅 赵月峰 王璐 余治昊

杨群, 常海洲, 杜帅, 赵月峰, 王璐, 余治昊. 五彩湾煤镜质组与惰质组在热解中的相互作用[J]. 燃料化学学报(中英文), 2015, 43(11): 1295-1302.
引用本文: 杨群, 常海洲, 杜帅, 赵月峰, 王璐, 余治昊. 五彩湾煤镜质组与惰质组在热解中的相互作用[J]. 燃料化学学报(中英文), 2015, 43(11): 1295-1302.
YANG Qun, CHANG Hai-zhou, DU Shuai, ZHAO Yue-feng, WANG Lu, YU Zhi-hao. Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1295-1302.
Citation: YANG Qun, CHANG Hai-zhou, DU Shuai, ZHAO Yue-feng, WANG Lu, YU Zhi-hao. Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1295-1302.

五彩湾煤镜质组与惰质组在热解中的相互作用

基金项目: 国家自然科学基金(21276156)资助项目
详细信息
    通讯作者:

    常海洲,Tel:021-65710384-607,E-mail:ycchz@126.com

  • 中图分类号: TQ530.2

Pyrolysis interaction between vitrinite and inertinite from Chinese Wucaiwan coal

Funds: The project was supported by the National Natural Science Foundation of China (21276156).
  • 摘要: 以五彩湾煤镜质组、惰质组为研究对象,建立两种不同的体系,镜质组与惰质组无相互作用体系(A)和相互作用体系(B)。利用热重技术(TG)和傅里叶变换红外技术(FT-IR),将两体系的热解固体产物进行红外分析。结果表明,在300~450℃,体系B的脂肪氢含量高于体系A,表明镜质组与惰质组之间发生了烷基自由基转移反应,芳氢的含量也是体系B多于体系A,这说明镜质组与惰质组之间同时发生了芳构化作用,随温度升高,镜质组生成少量氢自由基与惰质组发生侧链取代反应;在500~700℃,体系B的脂肪氢含量和芳氢含量均低于体系A,表明此时镜质组与惰质组之间发生缩聚反应及缩合反应;750~800℃时,脂肪氢和芳香氢含量均为体系B大于体系A,说明体系B中,镜质组产生较多的氢自由基与惰质组大分子芳香结构发生氢化反应,同时与惰质组发生侧链取代反应;850~900℃时,镜质组与惰质组之间进一步发生多环芳香缩合反应。
  • XIE K, ZHANG Y, LI C, LING D. Pyrolysis characteristics of macerals separated from asingle coal and their artificial mixture[J]. Fuel, 1991, 70(3): 474-479.
    WANG J, DU J, CHANG L, XIE K C. Study on the structure and pyrolysischaracteristics of Chinese western coals[J]. Fuel Process Technol, 2010, 91(4): 430-433.
    OZTAS N A, YURUM Y. Pyrolysis of TurkishZonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000, 79(10): 1221-1227.
    SAFAROVA M, KUSY J, ANDEL L. Pyrolysis of brown coal under different process conditions[J]. Fuel, 2005, 84(17): 2280-2285.
    ZHAO Y, HU H, JIN, HE X, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Process Technol, 2011, 92(4): 780-786.
    谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002. (XIE Ke-chang. Coal structure and its reactivity[M]. Beijing: Science Press, 2002.)
    SUN Q L, LI W, LI B Q. The synergistic effect between macerals during pyrolysis[J]. Fuel, 2002, 81(7): 973-974.
    孙庆雷, 李文, 李保庆. 神木煤热解的挥发分收率与岩相组成的关系[J]. 化工学报, 2003, 54(2): 269-272. (SUN Qing-lei, LI Wen, LI Bao-qing. Relationship between volatile yield and petrographic analysis during pyrolysis of Shenmu macerals[J]. Chem Ind Eng (China), 2003, 54(2): 269-272.)
    李文华. 东胜-神府煤的煤质特征与转化特性(兼论中国动方媒的岩相特征)[D]. 北京: 煤炭科学研究总院, 2001. (LI Wen-hua. Characteristics and conversion behavior of Donsheng-Shenfu coal (Petrographical Characteristics of Chinese steam coal)[D]. Beijing: CCRI, 2001.)
    何秀风, 陈小利, 杜娟, 常丽萍. 宁夏原煤及其显微组分热解过程中气相产物生成的研究[J]. 煤化工, 2009, 2: 25-27. (HE Xiu-feng, CHEN Xiao-li, DU Juan, CHANG Li-ping. Study on the gaseous products generated during pyrolysis of ningxia raw coal and its macerals[J]. Coal Chem Ind, 2009, 2: 25-27.)
    DUXBURY J. Prediction of coal pyrolysis yields from BS volatile matter and petrographic analysis[J]. Fuel, 1997, 76(13): 1337-1343.
    AHMED M A, BLESA M J, JUAN R, VANDENBERGHE R E.Characterisation of an Egyptian coal by Mossbauer and FT-IR spectroscopy[J]. Fuel, 2003, 82(14): 1825-1829.
    GENG W H, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009, 88(1): 139-144.
    SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FT-IR spectroscopy[J]. Energy, 2010, 35(12): 5347-5353.
    ALESSIO A D, VERGAMINI P, BENEDETTI E. FT-IR investigation of the structural changes of Sulcis and South Africa coals under progressive heating in vacuum[J]. Fuel, 2000, 79(10): 1215-1220.
    ZHUO Y, LEMAIGNEN L, CHATZAKIS I N, REED G P, DUGWELL D R, KANDIYOTI R. An attempt to correlate conversions in pyrolysis and gasification with FT-IR spectra of coals[J]. Energy Fuels, 2000, 14(5): 1049-1058.
    JAMES C H, ISABEL S, MARIA M, ALAN C C. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun.[J]. Spectrochim Acta, Part A, 2007, 67(5): 1433-1437.
    常海洲, 王传格, 曾凡桂, 李军, 李文英, 谢克昌. 不同还原程度煤显微组分组表面结构XPS对比分析[J]. 燃料化学学报, 2006, 34(3): 389-392. (CHANG Hai-zhou, WANG Chuan-ge, ZENG Fan-gui, LI Jun, LI Wen-ying, XIE Ke-chang. XPS comparativeanalysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006, 34(3): 389-392.)
    彭立才, 韩德馨, 邵文斌, 刘青文. 柴达木盆地北缘侏罗系烃源岩干酪根 13C核磁共振研究[J]. 石油学报, 2002, 23(2): 34-37. (PENG Li-cai, HAN De-xin, SHAO Wen-bin, LIU Qing-wen. 13C NMR research on the kerogens of Jurassic hydrocabon source rock in the northen edge, Qaidam basin[J]. Acta Pet Sin, 2002, 23(2): 34-37.)
    郑昀辉, 戴中蜀. 用NMR研究低温热处理对低煤化度煤化学组成结构的影响[J]. 煤炭转化, 1997, 20(4): 54-59. (ZHENG Yun-hui, DAI Zhong-shu.Using NMR to research the influence of low temperature pyrolysis on the chemical component and structure of low rank coal[J]. Coal Conv, 1997, 20(4): 54-59.)
    TREWHELLA M T, POPLETT L J F, GRINT A. Structure of Green River oil shale kerogen determination using solid state 13C-NMR spectroscopy[J]. Fuel, 1986, 65(4): 541-546.
    罗陨飞, 李文华, 陈亚飞. 中低变质程度煤显微组分结构的 13C-NMR研究[J]. 燃料化学学报, 2005, 33(5): 540-543. (LUO Yun-fei, LI Wen-hua, CHEN Ya-fei. 13 C- NMR analysis on different macerals of several low- to- medium rank coals[J]. J Fuel Chem Technol, 2005, 33(5): 540-543.)
    JOSE V I, EDGAR M, RAFAEL M. FT-IR study of the evolution of coalstructure during the coalification process[J]. Org Geochem, 1996, 6(24): 725-735.
  • 加载中
计量
  • 文章访问数:  393
  • HTML全文浏览量:  25
  • PDF下载量:  794
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-09
  • 修回日期:  2015-09-14
  • 刊出日期:  2015-11-30

目录

    /

    返回文章
    返回