留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预裂化理论研究:基质表面酸性位类型及不同类型酸性位接触顺序对裂化过程小分子烯烃收率的影响

王斌 张强 李春义 山红红

王斌, 张强, 李春义, 山红红. 预裂化理论研究:基质表面酸性位类型及不同类型酸性位接触顺序对裂化过程小分子烯烃收率的影响[J]. 燃料化学学报(中英文), 2015, 43(11): 1350-1358.
引用本文: 王斌, 张强, 李春义, 山红红. 预裂化理论研究:基质表面酸性位类型及不同类型酸性位接触顺序对裂化过程小分子烯烃收率的影响[J]. 燃料化学学报(中英文), 2015, 43(11): 1350-1358.
WANG Bin, ZHANG Qiang, LI Chun-yi, SHAN Hong-hong. Study on the preliminary cracking of heavy vacuum gas oil: Effect of acid type and contacting order of Lewis and Brönsted sites of matrices on the yield of LPG olefins[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1350-1358.
Citation: WANG Bin, ZHANG Qiang, LI Chun-yi, SHAN Hong-hong. Study on the preliminary cracking of heavy vacuum gas oil: Effect of acid type and contacting order of Lewis and Brönsted sites of matrices on the yield of LPG olefins[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11): 1350-1358.

预裂化理论研究:基质表面酸性位类型及不同类型酸性位接触顺序对裂化过程小分子烯烃收率的影响

基金项目: 国家自然科学基金(U1462205,21406270),研究生创新工程(YCX2015028),中央高校基本科研业务费专项资金(15CX06036A)和青岛市民生计划(13-1-3-126-nsh)资助项目
详细信息
    通讯作者:

    李春义,E-mail:chuyli@upc.edu.Cn

  • 中图分类号: TE624.9+1

Study on the preliminary cracking of heavy vacuum gas oil: Effect of acid type and contacting order of Lewis and Brönsted sites of matrices on the yield of LPG olefins

Funds: The project was supported by the National Natural Science Foundation of China (U1462205, 21406270), the China University of Petroleum for Postgraduate Technology Innovation Project (YCX2015028), the Fundamental Research Funds for the Central Universities (15CX06036A), and Qingdao People爷s Livelihood Project (13-1-3-126-nsh).
  • 摘要: 在区分氢负离子转移反应与氢转移反应、非选择性氢转移反应与总的氢转移反应的情况下,通过合成物性相近但酸性不同的氧化铝,用以作为裂化催化剂基质材料,在固定床反应器上考察了催化裂化过程,基质酸性位类型及基质表面Lewis及Brönsted酸性位接触顺序对小分子烯烃(丙烯、丁烯)收率的影响。结果表明,催化裂化生成小分子烯烃过程中,分子筛与基质所呈现出的反应特点存在较大的区别,前者活性虽高,但总的氢转移反应活性过强。基质材料裂化活性虽低但其表面以氢负离子转移反应为主,反应路径角度更有利于小分子烯烃收率的提高。另外,基质表面存在Brönsted酸性位,或原料油首先与基质表面Lewis酸性位相接触再与Brönsted酸性位反应的预裂化过程,会在促进裂化反应发生的同时抑制总的氢转移反应,更有利于小分子烯烃收率的提高。
  • LI C, YANG C, SHAN H. Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil[J]. Ind Eng Chem Res, 2007, 46(14): 4914-4920.
    CORMA A, MELO F V, SAUVANAUD L, ORTEGA F. Light cracked naphtha processing: Controlling chemistry for maximum propylene production[J]. Catal Today, 2005, 107-108: 699-706.
    CORMA A, FARALDOS M, MARTINEZ A, MIFSUD A. Hydrogen transfer on USY zeolites during gas oil cracking: Influence of the adsorption characteristics of the zeolite catalysts[J]. J Catal, 1990, 122(2): 230-239.
    OTTERSTEDT J E, ZHUY, STERTE J. Catalytic cracking of heavy oil over catalysts containing different types of zeolite Y in active and inactive matrices[J]. Appl Catal, 1988, 38(1): 143-155.
    FENG R, LIU S, BAI P, QIAO K, WANG Y H, MEGREN M J, YAN Z F. Preparation and characterization of γ-Al2O3 with rich Brönsted acid sites and its application in the fluid catalytic cracking process[J]. J Phys Chem C, 2014, 118(12): 6226-6234.
    XU S, ZHANG Q, FENG Z, MENG X, ZHAO T, LI C, YANG C, SHAN H. A high-surface-area silicoaluminophosphate material rich in Brönsted acid sites as a matrix in catalytic cracking[J]. J Nat Gas Chem, 2012, 21(6): 685-693.
    HOLLAND B T, SUBRAMANI V, GANGWAL S K. Utilizing colloidal silica and aluminum-doped colloidal silica as a binder in FCC catalysts: Effects on porosity, acidity, and microactivity[J]. Ind Eng Chem Res, 2007, 46(13): 4486-4496.
    CHEN W, HAN D, SUN X, LI C. Studies on the preliminary cracking of heavy oils: Contributions of various factors[J]. Fuel, 2013, 106: 498-504.
    WANG B, HAN C, ZHANG Q, LI C,YANG C, SHAN H, Studies on the preliminary cracking of heany oils: The effect of matrix acidity and a proposal of a new reaction route[J]. Energy Fuels, 2015, doi: 10.1021/acs.energyfuels.5b01280.
    CORMA A, MIGUEL P J, ORCHILLES A V. The role of reaction temperature and cracking catalyst characteristics in determining the relative rates of protolytic cracking, chain propagation, and hydrogen transfer[J]. J Catal, 1994, 145(1): 171-180.
    龚剑洪, 龙军, 许友好. 催化裂化过程中负氢离子转移反应和氢转移反应的不同特征[J]. 催化学报, 2007, 28(1): 67-72. (GONG Jian-hong, LONG Jun, XU You-hao. Different reaction characteristics of hydride transfer and hydrogen transfer in catalytic cracking[J]. Chin J Catal, 2007, 28(1): 67-72.)
    朱华元, 张信. 含碱土金属分子筛对 FCC 催化剂催化性能的影响[J]. 石油学报(石油加工), 2001, 17(6): 6-10. (ZHU Hua-yuan, ZHANG Xin. Influence of zeolites containing alkaline earth metal on performance of FCC catalysts[J]. Acta Pet Sin ( Pet Process sect), 2001, 17(6): 6-10.)
    ALERASOOL S, DOOLIN P K, HOFFMAN J F. Matrix acidity determination: A bench scale method for predicting resid cracking of FCC catalysts[J]. Ind Eng Chem Res, 1995, 34(2): 434-439.
    EMEIS C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141(2): 347-354.
    KORTUNOV P, VASENKOV S, KARGER J. The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales[J]. J Am Chem Soc, 2005, 127(37): 13055-13059.
    ABBOT J. Role of Brönsted and Lewis acid sites during cracking reactions of alkanes[J]. Appl Catal, 1989, 47(1): 33-44.
    BALLMOOS R V, HAYWARD C T. Matrix vs zeolite contributions to the acidity of fluid cracking catalysts[J]. Stud Surf Sci Catal, 1991, 65: 171-183.
  • 加载中
计量
  • 文章访问数:  331
  • HTML全文浏览量:  18
  • PDF下载量:  516
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-27
  • 修回日期:  2015-08-02
  • 刊出日期:  2015-11-30

目录

    /

    返回文章
    返回