留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙元素对焦炭表面NO吸附行为的影响:密度泛函理论研究

刘磊 金晶 林郁郁 侯封校

刘磊, 金晶, 林郁郁, 侯封校. 钙元素对焦炭表面NO吸附行为的影响:密度泛函理论研究[J]. 燃料化学学报(中英文), 2015, 43(12): 1414-1419.
引用本文: 刘磊, 金晶, 林郁郁, 侯封校. 钙元素对焦炭表面NO吸附行为的影响:密度泛函理论研究[J]. 燃料化学学报(中英文), 2015, 43(12): 1414-1419.
LIU Lei, JIN Jing, LIN Yu-yu, HOU Feng-xiao. Effect of calcium on the absorption of NO on char surface:A density functional theory study[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12): 1414-1419.
Citation: LIU Lei, JIN Jing, LIN Yu-yu, HOU Feng-xiao. Effect of calcium on the absorption of NO on char surface:A density functional theory study[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12): 1414-1419.

钙元素对焦炭表面NO吸附行为的影响:密度泛函理论研究

基金项目: 国家科技支撑计划(2015BAA04B03)和上海市科委基础研究重点项目(14JC1404800)资助
详细信息
    通讯作者:

    金晶,Tel:+86-21-55277768,E-mail:alicejin001@163.com

  • 中图分类号: TK16

Effect of calcium on the absorption of NO on char surface:A density functional theory study

Funds: The project was supported by the National Science and Technology Supporting Project of China(2015BAA04B03)and the Key Project in Fundamental Research of Science and Technology Commission of Shanghai Municipality(14JC1404800).
  • 摘要: 采用密度泛函理论研究了Ca元素对焦炭表面NO吸附行为的影响。使用周期性石墨烯模型近似模拟实际焦炭表面的石墨化结构,并在石墨烯表面装饰Ca原子(按质量计Ca原子覆盖率为13.3%),考察了Ca元素对焦炭表面NO吸附的催化作用。计算结果表明,NO分子在纯净石墨烯表面的吸附属于物理吸附,结合能仅为-19.34 kJ/mol;石墨烯表面掺入Ca原子后,由于Ca原子4s轨道和3d轨道的电子转移到NO分子,结合能显著提高至-206.02 kJ/mol。
  • LUAN T, WANG X, HAO Y, CHENG L. Control of NO emission during coal reburning[J]. Appl Energy, 2009, 86(9):1783-1787.
    刘彦,齐学义,丁宁,罗丹,陈方,徐江荣,周俊虎,岑可法.煤粉再燃过程中NO均相与异相还原反应相对贡献的研究[J].动力工程, 2009, 29(10):946-949+955. (LIU Yan, QI Xue-yi, DING Ning, LUO Dan, CHEN Fang, XU Jiang-rong, ZHOU Jun-huo, CEN Kefa. Study on relative contributions of homogenous and heterogeneous reaction during no reduction in pulverized coal reburning[J]. J Power Eng, 2009, 29(10):946-949+955.)
    CHAMBRION P, SUZUKI T, ZHANG Z-G, KYOTANI T, TOMITA A. XPS of nitrogen-containing functional groups formed during the C-NO reaction[J]. Energy Fuels, 1997, 11(3):681-685.
    CHAMBRION P, KYOTANI T, TOMITA A. Role of N-containing surface species on NO reduction by carbon[J]. Energy Fuels, 1998, 12(2):416-421.
    YAMASHITA H, TOMITA A, YAMADA H, KYOTANI T, RADOVIC LR. Influence of char surface chemistry on the reduction of nitric oxide with chars[J]. Energy Fuels, 1993, 7(1):85-89.
    ILLAN-GOMEZ M J, LINARES-SOLANO A, RADOVIC L R, SALINAS-MARTINEZ D E, LECEA C. NO reduction by activated carbons 4. Catalysis by calcium[J]. Energy Fuels, 1995, 9(1):112-118.
    KYOTANI T, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B, 1999, 103(17):3434-3441.
    ZHANG H, JIANG X, LIU J, SHEN J. New Insights into the Heterogeneous reduction reaction between NO and char-bound nitrogen[J]. Ind Eng Chem Res, 2014, 53(15):6307-6315.
    ZHANG X, ZHOU Z, ZHOU J, LIU J, CEN K. Density functional study of NO desorption from oxidation of nitrogen containing char by O2[J]. Combust Sci Technol, 2012, 184(4):445-455.
    ZHOU Z, ZHANG X, ZHOU J, LIU J, CEN K. A molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Source Part A, 2013, 36(2):158-166.
    MONTOYA A, MONDRAGON F, TRUONG T N. Kinetics of nitric oxide desorption from carbonaceous surfaces[J]. Fuel Process Technol, 2002, 77:453-458.
    张秀霞,周志军,周俊虎,姜树栋,刘建忠,岑可法. N2O在焦炭表面异相生成和分解机理的密度泛函理论研究[J].燃料化学学报, 2011, 39(11):806-811. (ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-huo, JIANG Chu-dong, LIU Jian-zhong, CEN Ke-fa. A study of functional study of heterogeneous formation and decomposition of N2O on the surface of char[J]. J Fuel Chem Technol, 2011, 39(11):806-811.)
    温正城,王智化,周俊虎,周志军,刘建忠,岑可法.金属钙对煤焦异相还原NO催化机理的量子化学研究[J].燃烧科学与技术, 2009, 15(6):505-510. (WEN Zheng-cheng, WANG Zhi-hua, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Quantum chemistry study on catalytic mechanism of Ca on NO-char heterogeneous reaction[J]. J Combust Sci Technol, 2009, 15(6):505-510.)
    SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite[J]. J Phys Chem C, 2007, 111(14):5465-5473.
    SENDT K, HAYNES B S. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene[J]. Proc Combust Inst, 2011, 33(2):1851-1858.
    DENIS P A, IRIBARNE F. Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene[J]. Chem Phys, 2014, 430:1-6.
    OUBAL M, PICAUD S, RAYEZ M T, RAYEZ J C. Water adsorption on oxidized single atomic vacancies present at the surface of small carbonaceous nanoparticles modeling soot[J]. Chemphyschem, 2010, 11(18):4088-4096.
    GARCIA-FERNANDEZ C, PICAUD S, RAYEZ M T, RAYEZ J C, RUBAYO-SONEIRA J. First-principles study of the interaction between NO and large carbonaceous clusters modeling the soot surface[J]. J Phys Chem A, 2014, 118(8):1443-1450.
    AO Z, DOU S, XU Z, JIANG Q, WANG G. Hydrogen storage in porous graphene with Al decoration[J]. Int J Hydrogen Energy, 2014, 39(28):16244-16251.
    LIU W, LIU Y, WANG R. Prediction of hydrogen storage on Y-decorated graphene:A density functional theory study[J]. Appl Surf Sci, 2014, 296:204-208.
    NACHIMUTHU S, LAI P J, JIANG J C. Efficient hydrogen storage in boron doped graphene decorated by transition metals-A first-principles study[J]. Carbon, 2014, 73:132-140.
    QIU P, HUANG H, ZHANG J, LIU L, CHEN Y. Catalytic effects of main metals in coal ash on advanced reburning of pulverized coal[J]. Energy Fuels, 2010, 24:4919-4924.
    DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92(1):508-517.
    DELLEY B. From molecules to solids with the DMol(3) approach[J]. J Chem Phys, 2000, 113(18):7756-7764.
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868.
    PERDEW J P, YUE W. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23):13244-13249.
    TKATCHENKO A, SCHEFFLER M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data[J]. Phys Rev Lett, 2009, 102:073005.
    ORTMANN F, BECHSTEDT F, SCHMIDT W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Phys Rev B, 2006, 73:205101.
    MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12):5188-5192.
    DELLEY B. Hardness conserving semilocal pseudopotentials[J]. Phys Rev B, 2002, 66:155125.
    ATACA C, AKTURK E, CIRACI S. Hydrogen storage of calcium atoms adsorbed on graphene:First-principles plane wave calculations[J]. Phys Rev B, 2009, 79:041406.
    BEHESHTI E, NOJEH A, SERVATI P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage[J]. Carbon, 2011, 49(5):1561-1567.
  • 加载中
计量
  • 文章访问数:  441
  • HTML全文浏览量:  37
  • PDF下载量:  410
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-23
  • 修回日期:  2015-08-21
  • 刊出日期:  2015-12-30

目录

    /

    返回文章
    返回