留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of solvent extraction pretreatments on the variation of macromolecular structure of low rank coals

HU Ru-nan WANG Zhi-cai LI Lei WANG Xiao-ling PAN Chun-xiu KANG Shi-gang REN Shi-biao LEI Zhi-ping SHUI Heng-fu

胡如男, 王知彩, 李磊, 王晓玲, 潘春秀, 康士刚, 任世彪, 雷智平, 水恒福. 溶剂萃取预处理对低阶煤大分子结构的影响[J]. 燃料化学学报(中英文), 2018, 46(7): 778-786.
引用本文: 胡如男, 王知彩, 李磊, 王晓玲, 潘春秀, 康士刚, 任世彪, 雷智平, 水恒福. 溶剂萃取预处理对低阶煤大分子结构的影响[J]. 燃料化学学报(中英文), 2018, 46(7): 778-786.
HU Ru-nan, WANG Zhi-cai, LI Lei, WANG Xiao-ling, PAN Chun-xiu, KANG Shi-gang, REN Shi-biao, LEI Zhi-ping, SHUI Heng-fu. Effect of solvent extraction pretreatments on the variation of macromolecular structure of low rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 778-786.
Citation: HU Ru-nan, WANG Zhi-cai, LI Lei, WANG Xiao-ling, PAN Chun-xiu, KANG Shi-gang, REN Shi-biao, LEI Zhi-ping, SHUI Heng-fu. Effect of solvent extraction pretreatments on the variation of macromolecular structure of low rank coals[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 778-786.

溶剂萃取预处理对低阶煤大分子结构的影响

基金项目: 

the Natural Scientific Foundation of China 21476004

the Natural Scientific Foundation of China 21476003

the Natural Scientific Foundation of China 21476002

the Natural Scientific Foundation of China 51174254

Natural Science Foundation of Anhui Provincial Education Department KJ2016A808

详细信息
  • 中图分类号: TQ531.5

Effect of solvent extraction pretreatments on the variation of macromolecular structure of low rank coals

Funds: 

the Natural Scientific Foundation of China 21476004

the Natural Scientific Foundation of China 21476003

the Natural Scientific Foundation of China 21476002

the Natural Scientific Foundation of China 51174254

Natural Science Foundation of Anhui Provincial Education Department KJ2016A808

More Information
  • 摘要: 为了研究溶剂预处理对低阶煤的固有大分子结构的影响,本研究对锡林郭勒褐煤(XLL)和神府次烟煤(SFC)分别进行了四氢呋喃(THF)索氏抽提、二硫化碳/N-甲基-2-吡咯烷酮(CS2/NMP)混合溶剂抽提及热溶处理,并对所得抽余煤进行了傅里叶红外漫反射光谱分析(DRIFT)、热重分析(TGA)、压汞法分析(MI)和溶胀度测定。结果表明,溶剂抽提导致煤大分子结构重排和再缔合。其中,THF索式抽提和CS2/NMP混合溶剂抽提可以改变非共价键交联作用,特别是氢键作用分布,从而不同程度地松弛煤大分子结构。然而,高温溶剂热溶处理主要促进了煤大分子的共价键交联,尤其是对锡林郭勒褐煤(XLL)。所有抽取煤的溶胀都受Fickian扩散控制,且所有抽取煤的溶胀活化能都低于原煤。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  DRIFT spectra of raw coals and extracted coals

    Figure  2  Changes of intensity and peak position of OH band

    Figure  3  TG and DTG of raw coals and extracted coals

    □: raw coal; ○: SEC; △: MEC; ▽: TEC

    Figure  4  Functions of swelling ratios of raw coal and treated coals as swelling time at 20℃

    Figure  5  Dissolution-out curves of raw coals and extracted coals

    Table  1  Ultimate and proximate analyses of XLL and SFC

    Sample Proximate analysis w/% Ultimate analysis wdaf/%
    Mad Ad Vdaf C H N S O*
    XLL 15.77 11.01 40.34 62.67 4.83 0.98 0.44 31.08
    SFC 7.40 5.58 32.44 75.95 5.18 1.05 0.33 17.49
    *: by difference
    下载: 导出CSV

    Table  2  Extraction yields of XLL and SFC

    Sample Yield w/%
    SE ME TE
    XLL 4.4 6.6 11.4
    SFC 10.3 14.0 16.9
    下载: 导出CSV

    Table  3  Elemental analyses results of raw coals and extracted coals

    Sample Element content wdaf/% Atomic ratio
    N C S H O* H/C O/C
    XLL 0.98 62.67 0.44 4.83 31.08 0.93 0.37
    SEC(XLL) 1.05 62.05 0.47 4.77 31.66 0.92 0.38
    TEC(XLL) 0.95 64.82 0.51 4.65 29.07 0.86 0.34
    MEC(XLL) 1.27 61.65 0.62 4.79 31.67 0.93 0.39
    SFC 1.05 75.95 0.33 5.18 17.49 0.82 0.17
    SEC(SFC) 1.02 76.18 0.32 5.16 17.32 0.81 0.17
    TEC(SFC) 1.03 78.13 0.39 4.92 15.53 0.76 0.15
    MEC(SFC) 1.18 74.53 0.54 5.01 18.74 0.81 0.19
    *: by difference
    下载: 导出CSV

    Table  4  MIP results of raw coals and extracted coals

    Sample Total pore area S/(m2·g-1) Average pore diameter d/nm Bulk density ρ/(g·mL-1) Apparent density ρ/(g·mL-1) Porosity /%
    XLL 8.26 269 0.8119 1.4792 45.11
    SEC(XLL) 9.06 497.5 0.5459 1.4182 61.51
    MEC(XLL) 8.01 348.9 0.6336 1.1372 44.29
    TEC(XLL) 10.40 404.3 0.5632 1.3807 59.21
    SFC 10.77 261.3 0.659 1.228 46.35
    SEC(SFC) 7.39 405.2 0.619 1.153 46.33
    MEC(SFC) 6.89 447.7 0.638 1.256 49.21
    TEC(SFC) 10.2 272.2 0.665 1.236 46.18
    下载: 导出CSV

    Table  5  Swelling ratios of raw coals and extracted coals

    Swelling solvent XLL SFC
    raw coal MEC SEC TEC raw coal MEC SEC TEC
    Toluene 0.90 1.04 0.86 0.92 1.03 1.24 1.06 1.07
    Methanol 1.16 1.22 1.09 1.13 1.15 1.13 1.02 1.18
    THF 1.21 1.29 1.00 1.30 1.60 1.42 1.31 1.69
    Pyridine 1.48 1.32 1.28 1.35 1.70 1.71 1.47 1.58
    下载: 导出CSV

    Table  6  Swelling kinetic parameters of raw coals and extracted coals

    Sample Q n K×100 Ea/(kJ·mol-1)
    XLL 1.28-1.81 0.07-0.25 10.0-67.4 27.20
    SEC(XLL) 1.41-1.62 0.13-0.16 26.5-48.4 8.04
    MEC(XLL) 1.25-1.54 0.15-0.28 14.4-61.5 20.50
    TEC(XLL) 1.35-1.50 0.10-0.15 33.9-63.4 8.80
    SFC 1.67-1.80 0.04-0.09 55.9-60.9 5.31
    SEC(SFC) 1.62-1.70 0.04-0.06 60.9-72.9 2.63
    MEC(SFC) 1.66-1.80 0.03-0.06 68.2-87.8 3.54
    TEC(SFC) 1.54-1.62 0.04-0.07 45.9-63.1 4.51
    下载: 导出CSV

    Table  7  Effective diffusion coefficients of raw coals and extracted coals

    Sample De /(m2·h-1) Correlation coefficient
    XLL 6.1×10-8 0.96
    SEC(XLL) 7.0×10-8 0.94
    MEC(XLL) 4.2×10-8 0.96
    TEC(XLL) 4.4×10-8 0.98
    SFC 5.4×10-8 0.91
    SEC(SFC) 5.6×10-8 0.93
    MEC(SFC) 7.4×10-8 0.91
    TEC(SFC) 5.7×10-8 0.97
    下载: 导出CSV
  • [1] XIE K C, LI F, FENG J, LIU J S. Study on the structure and reactivity of swollen coal[J]. Fuel Process Technol, 2000, 64(1):241-251. http://cn.bing.com/academic/profile?id=04e4eb948b2dc8bf0a4df15a007d284d&encoded=0&v=paper_preview&mkt=zh-cn
    [2] MARZEC A. Macromolecular and molecular model of coal structure[J]. Fuel Process Technol, 1986, 14(86):39-46. http://cn.bing.com/academic/profile?id=8a1613578a557c277afc85fd19cb6c48&encoded=0&v=paper_preview&mkt=zh-cn
    [3] ⅡNO M. Network structure of coals and association behavior of coal-derived materials[J]. Fuel Process Technol, 2000, 62(2):89-101. http://cn.bing.com/academic/profile?id=3f767e5ce8ea5e40909b234c58c0b870&encoded=0&v=paper_preview&mkt=zh-cn
    [4] MARZEC A. Towards an understanding of the coal structure:A review[J]. Fuel Process Technol, 2002, 77(25):25-32. http://cn.bing.com/academic/profile?id=996a7e2cc36e5b89bcd4f69460716f3a&encoded=0&v=paper_preview&mkt=zh-cn
    [5] KRZESIN'SKA M. Averaged structural units in bituminous coals studied by means of ultrasonic wave velocity measurements[J]. Energy Fuels, 2001, 15(4):930-935. doi: 10.1021/ef0100101
    [6] MONDRAGON F, QUINTERO G, JARAMILLO A, FERNANDEZA J, HALLB P J. The catalytic liquefaction of coal in the presence of ethanol[J]. Fuel Process Technol, 1998, 53(3):171-181. doi: 10.1016/S0378-3820(97)00046-5
    [7] STEPHENS H, KOTTENSTETTE R. Studies of coal reactivity for direct liquefaction[J]. Fuel, 1990, 70(3):386-392. http://cn.bing.com/academic/profile?id=c5c97abf6cf19fbf34a1a0e05d73dec0&encoded=0&v=paper_preview&mkt=zh-cn
    [8] JOSEPH J T. Liquefaction behavior of solvent-swollen coals[J]. Fuel, 1991, 70(2):139-144. doi: 10.1016/0016-2361(91)90144-Y
    [9] MAE K, MAKI T, OKUTSU H, MIURA K. Examination of relationship between coal structure and pyrolysis yields using oxidized brown coals having different macromolecular networks[J]. Fuel, 2000, 79(3/4):417-425. http://cn.bing.com/academic/profile?id=a3d76a8b29a2bd5ebf3eff110f989529&encoded=0&v=paper_preview&mkt=zh-cn
    [10] JOSEPH J T. Beneficial effects of preswelling on conversion and catalytic activity during coal liquefaction[J]. Fuel, 1991, 70(3):459-464. doi: 10.1016/0016-2361(91)90139-2
    [11] SHUI H F, LIU J L, WANG Z C, CAO M X, WEI X Y. Effect of pre-swelling of coal at mild temperatures on its hydro-liquefaction properties[J]. Fuel Process Technol, 2009, 90(7/8):1047-1051. http://cn.bing.com/academic/profile?id=2ea594c1b66d610ce43ac1cfcc222e2f&encoded=0&v=paper_preview&mkt=zh-cn
    [12] MATHEWS J P, BURGESS-CLIFFORD C, PAINTER P. Interactions of Illinois No. 6 bituminous coal with solvents:A review of solvent swelling and extraction literature[J]. Energy Fuels, 2015, 29(3):1279-1294. doi: 10.1021/ef502548x
    [13] ⅡNO M, TAKANOHASHI T, OHSUGA H, TODA K. Extraction of coals with CS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature:Effect of coal rank and synergism of the mixed solvent[J]. Fuel, 1988, 67(12):1639-1647. doi: 10.1016/0016-2361(88)90208-6
    [14] SHIN Y J, SHEN Y W. Preparation of coal slurry with organic solvents[J]. Chemosphere, 2007, 68(2):389-393. doi: 10.1016/j.chemosphere.2006.12.049
    [15] HU H Q, SHA G Y, CHEN G H. Effect of solvent swelling on liquefaction of Xinglong coal at less severe conditions[J]. Fuel Process Technol, 2000, 68(1):33-34. doi: 10.1016/S0378-3820(00)00101-6
    [16] SHUI H F, WANG Z C, CAO M X. Effect of pre-swelling of coal on its solvent extraction and liquefaction properties[J]. Fuel, 2008, 87(13/14):2908-2913. http://cn.bing.com/academic/profile?id=a5ad33cb2e4615bd2c6262ebe20dc60d&encoded=0&v=paper_preview&mkt=zh-cn
    [17] PINTO F, GULYURTLU I, LOBO L S, CABRITA I. Effect of coal pre-treatment with swelling solvents on coal liquefaction[J]. Fuel, 1999, 78(6):629-634. doi: 10.1016/S0016-2361(98)00193-8
    [18] SZELIGA J, MARZEC A. Swelling of coal in relation to solvent electron-donor numbers[J]. Fuel, 1983, 62(10):1229-1231. doi: 10.1016/0016-2361(83)90070-4
    [19] PAINTER P C, PARK Y, SOBKOWIAK M, COLEMAN M M. Coal solubility and swelling. 2. Effect of hydrogen bonding on calculations of molecular weight from swelling measurements[J]. Energy Fuels, 1990, 4(4):384-393. doi: 10.1021/ef00022a009
    [20] PAINTER P C, PARK Y, GRAF J F. Coal solubility and swelling[J]. Energy Fuels, 1990, 4(4):393-397. doi: 10.1021/ef00022a010
    [21] LUCHT L M, PEPPAS N A. Macromolecular structure of coals:2. Molecular weight between crosslinks from pyridine swelling experiments[J]. Fuel, 1987, 66(6):803-809. doi: 10.1016/0016-2361(87)90128-1
    [22] NISHIOKA M. Evidence for the associated structure of bituminous coal[J]. Fuel, 1993, 72(12):1719-1724. doi: 10.1016/0016-2361(93)90361-5
    [23] OTAKE Y, SUUBERG E M. Temperature dependence of solvent swelling and diffusion process in coals[J]. Energy Fuels, 1997, 11(6):1155-1164. doi: 10.1021/ef970020v
    [24] QIN Z H, ZONG Z M, LIU J Z, MA H M, YANG M J, WEI X Y. Solubilities of lithotypes in carbon disulfide-N-methyl-2-pyrrolidinone mixed solvent[J]. J Fuel Chem Technol, 1997, 25(6):549-553. https://www.researchgate.net/publication/289181581_Solubilities_of_lithotypes_in_carbon_bisulfide-N-methyl-2-pyrrolidinone_mixed_solvent
    [25] YOSHIDA T, TAKANOHASHI T, SAKANISHI K, SAITO I, FUJITA M, MASHIMO K. The effect of extraction condition on 'HyperCoal' production (1) under room-temperature filtration[J]. Fuel, 2002, 81(11/12):1463-1469. http://cn.bing.com/academic/profile?id=ef0b52b3acf171cdb938430bc4980079&encoded=0&v=paper_preview&mkt=zh-cn
    [26] MIURA K, NAKAGAWA H, ASHIDA R, IHARA T. Production of clean fuels by solvent skimming of coal at around 350℃[J]. Fuel, 2004, 83(6):733-738. doi: 10.1016/j.fuel.2003.09.019
    [27] YOSHIDA T, LI C, TAKANOHASHI T, MATSUMURA A, SATO S, SAITO I. Effect of extraction condition on "HyperCoal" production (2) effect of polar solvents under hot filtration[J]. Fuel Process Technol, 2004, 86(1):61-72. doi: 10.1016/j.fuproc.2003.12.003
    [28] WANG Z C, SHUI H F, PAN C X, LI L, REN S B, LEI Z P, KANG S G, WEI C, HU J C. Structural characterization of the thermal extracts of lignite[J]. Fuel Process Technol, 2014, 120(120):8-15. http://cn.bing.com/academic/profile?id=60f10b63ef847a642be18b04c57081dc&encoded=0&v=paper_preview&mkt=zh-cn
    [29] WANG Z C, LI L, SHUI H F, LEI Z P, REN S B, KANG S G. High temperature thermal extraction of Xianfeng lignite and FT-IR characterization of its extracts and residues[J]. J Fuel Chem Technol, 2011, 39(6):401-406. doi: 10.1016/S1872-5813(11)60027-3
    [30] WANG Z C, SHUI H F, PEI Z N, GAO J S. Study on the hydrothermal treatment of Shenhua coal[J]. Fuel, 2008, 87(4):527-533. http://cn.bing.com/academic/profile?id=403d56cd654a34d96169b49f4c2b54e6&encoded=0&v=paper_preview&mkt=zh-cn
    [31] OKOLO G N, EVERSON R C, NEOMAGUS H W J P, ROBERTS M J, SAKUROVS R. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J]. Fuel, 2015, 141(141):293-304. http://cn.bing.com/academic/profile?id=7427a87b41e023d0394bd457267dbf98&encoded=0&v=paper_preview&mkt=zh-cn
    [32] ⅡNO M, TAKANOHASHI T, OBARA S, TSUETA H, SANKAWA Y. Characterization of the extracts and residues from CS2-N-methyl-2-pyrrolidinone mixed solvent extraction[J]. Fuel, 1989, 68(12):1588-1593. doi: 10.1016/0016-2361(89)90299-8
    [33] OTAKE Y, SUUBERG E M. Solvent swelling rates of low rank coals and implications regarding their structure[J]. Fuel, 1998, 77(8):901-904. doi: 10.1016/S0016-2361(97)00256-1
    [34] PANDE S, SHARMA D K. Studies of kinetics of diffusion of N-methyl-2-pyrrlidone (NMP), ethylenediamine (EDA) and NMP+EDA (1:1, vol/vol) mixed solvent system in Chinakuri coal by solvent swelling techniques[J]. Energy Fuels, 2001, 15(5):1063-1068. doi: 10.1021/ef9902395
    [35] ESTAPE D, GODIA F, SOLA C. Determination of glucose and ethanol effective diffusion coefficients in Ca-alginate gel[J]. Enzyme Microb Technol, 1992, 14(5):396-401. doi: 10.1016/0141-0229(92)90009-D
    [36] RITGER P L, PEPPAS N A. Transport of penetrants in the macromolecular structure of coals, 7. Transport in thin coal sections[J]. Fuel, 1987, 66(10):1379-1388. doi: 10.1016/0016-2361(87)90185-2
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  14
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-25
  • 修回日期:  2018-06-10
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回