留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状K/Mg-Fe-Al催化剂的制备及其CO加氢性能研究

张建利 王旭 马丽萍 于旭飞 马清祥 范素兵 赵天生

张建利, 王旭, 马丽萍, 于旭飞, 马清祥, 范素兵, 赵天生. 层状K/Mg-Fe-Al催化剂的制备及其CO加氢性能研究[J]. 燃料化学学报(中英文), 2017, 45(12): 1489-1498.
引用本文: 张建利, 王旭, 马丽萍, 于旭飞, 马清祥, 范素兵, 赵天生. 层状K/Mg-Fe-Al催化剂的制备及其CO加氢性能研究[J]. 燃料化学学报(中英文), 2017, 45(12): 1489-1498.
ZHANG Jian-li, WANG Xu, MA Li-ping, YU Xu-fei, Ma Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1489-1498.
Citation: ZHANG Jian-li, WANG Xu, MA Li-ping, YU Xu-fei, Ma Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1489-1498.

层状K/Mg-Fe-Al催化剂的制备及其CO加氢性能研究

基金项目: 

国家自然科学基金 21666030

国家自然科学基金 21366025

详细信息
  • 中图分类号: O643

Preparation of layered K/Mg-Fe-Al catalysts and its catalytic performances in CO hydrogenation

Funds: 

the National Natural Science Foundation of China 21666030

the National Natural Science Foundation of China 21366025

More Information
  • 摘要: 采用共沉淀法制备了系列不同Mg/Fe/Al配比MgFeAl-HTLcs前驱体,经焙烧、浸渍K改性、二次焙烧后用于CO加氢反应。采用N2吸附-脱附、SEM、TG、XRD、H2-TPR、XPS等手段对催化剂进行了表征。结果表明,共沉淀法制备的不同配比MgFeAl-HTLcs类水滑石前躯体均具有典型层状结构;焙烧后生成MgO、Fe2O3以及少量MgFeAlO4物相,三组元间相互作用增强,反应后以MgCO3和Fe3O4物相为主,同时出现较弱的Fe5C2相;K改性后发生结构重构,热稳定性增强,且随Al含量增加,比表面积显著单调下降;与K/Mg-Fe相比,K/Mg-Fe-Al样品中Fe2O3到Fe3O4的还原受到抑制;二次焙烧后,反应前表面相对富Fe,反应后表面富K。在CO加氢反应中,K/Mg-Fe-Al系列催化剂均表现出较高的反应活性以及烯烃选择性,随Fe/Al配比相对增加,C5+含量呈降低趋势,O/P值增加;与K/1.5Mg-0.67Fe相比,K/1.5Mg-0.67Fe-0.33Al催化剂C5+含量由22.17%降至10.90%,C2-4=含量由40.98%提高至47.28%。
  • 图  1  催化剂前驱体的XRD谱图

    Figure  1  XRD patterns of the catalyst precursors

    (a): samples with different Fe and Al contents; (b): samples with different Mg contents

    图  2  催化剂前驱体焙烧后的XRD谱图

    Figure  2  XRD patterns of the catalyst samples after calcination

    (a): samples with different Fe and Al contents; (b): samples with different Mg contents

    图  3  K改性后催化剂的XRD谱图

    Figure  3  XRD patterns of the catalyst samples after K promotion

    图  4  反应后催化剂的XRD谱图

    Figure  4  XRD patterns of the catalyst samples after reaction

    图  5  1.5Mg-0.2Fe-0.8Al催化剂的热重分析曲线

    Figure  5  Thermo gravimetric curves of 1.5Mg-0.2Fe-0.8Al sample

    图  6  焙烧前后典型样品的SEM照片

    Figure  6  SEM images of the samples before and after calcination

    (a), (c): before calcination; (b), (d): after calcination

    图  7  K改性二次焙烧前后催化剂的SEM照片

    Figure  7  SEM images of K modified samples before and after second calcination

    (a), (c): before calcination; (b), (d): after calcination

    图  8  催化剂的孔径分布

    Figure  8  Pore size distribution of the catalyst samples

    图  9  催化剂的H2-TPR谱图

    Figure  9  H2-TPR profiles of the catalyst samples

    图  10  催化剂的XPS谱图

    Figure  10  XPS spectra of the catalyst samples

    表  1  催化剂的织构性质

    Table  1  Textural properties of the catalysts

    Catalyst BET surface area A/(m2·g-1) Pore volume v/(cm3·g-1) Average pore size d/nm
    1.5Mg-0.67Fe-0.33Al 83.06 0.60 28.39
    K/1.5Mg-0.2Fe-0.8Al 131.09 0.23 7.11
    K/1.5Mg-0.2Fe-0.8Al-Ha 11.00 0.05 18.91
    K/1.5Mg-0.33Fe-0.67Al 167.58 0.25 5.96
    K/1.5Mg-0.33Fe-0.67Al-Ha 15.74 0.05 13.07
    K/1.5Mg-0.5Fe-0.5Al 116.85 0.21 7.26
    K/1.5Mg-0.67Fe-0.33Al 49.84 0.16 12.50
    K/1.5Mg-0.67Fe-0.33Al-Ha 33.20 0.08 9.78
    K/1.5Mg-0.8Fe-0.2Al 64.56 0.20 12.38
    K/1.5Mg-0.8Fe-0.2Al-Ha 17.32 0.06 13.19
    K/1.5Mg-0.67Fe 103.15 0.24 9.37
    K/1.5Mg-0.67Fe-Ha 50.95 0.10 7.86
    K/2.0Mg-0.67Fe-0.33Al 83.14 0.19 9.28
    K/3.0Mg-0.67Fe-0.33Al 84.77 0.19 9.06
    a: K promoted samples without calcination
    下载: 导出CSV

    表  2  不同条件下催化剂的表面组成

    Table  2  Surface composition of different samples

    Sample Surface atom content wartom/%a
    Mg Fe Al K O C Mg/Fe Fe/Al Fe/K
    K/1.5Mg-0.2Fe-0.8Alb 17.20 0.84 10.33 - 53.94 17.69 20.48 0.08 -
    K/1.5Mg-0.2Fe-0.8Al-Hb 17.04 1.18 8.80 0.14 55.25 17.60 14.44 0.13 8.43
    K/1.5Mg-0.67Fe-0.33Alb 17.87 3.66 5.90 0.29 53.03 19.26 4.88 0.62 12.62
    K/1.5Mg-0.67Fe-0.33Al-Hb 19.60 4.45 4.18 0.31 51.94 19.53 4.40 1.06 14.35
    K/1.5Mg-0.8Fe-0.2Alb 18.96 6.57 5.14 0.38 53.95 15.00 2.89 1.28 17.29
    K/1.5Mg-0.67Feb 21.89 9.00 - 0.26 52.31 16.55 2.43 - 34.62
    K/2.0Mg-0.67Fe-0.33Alb 21.60 4.81 5.88 0.25 54.20 13.27 4.49 0.82 19.24
    K/1.5Mg-0.2Fe-0.8Alc 9.73 0.63 11.95 - 40.49 37.21 15.44 0.05 -
    K/1.5Mg-0.2Fe-0.8Al-Hc 8.78 0.45 7.56 - 31.47 51.75 19.51 0.06 -
    K/1.5Mg-0.67Fe-0.33Alc 1.16 0.36 1.63 0.22 17.35 79.29 3.22 0.22 1.64
    K/1.5Mg-0.67Fe-0.33Al-Hc 14.84 3.00 5.95 0.17 43.70 32.35 4.95 0.50 17.65
    K/1.5Mg-0.8Fe-0.2Alc 1.84 0.77 1.96 0.48 22.98 71.97 2.39 0.39 1.60
    K/1.5Mg-0.67Fec 1.84 0.56 - 0.62 18.44 78.54 3.29 - 0.90
    K/2.0Mg-0.67Fe-0.33Alc 3.56 0.81 2.43 0.15 23.14 78.54 4.40 0.33 5.40
    a: calculated from the peak area of XPS spectra; b: fresh samples; c: used samples
    下载: 导出CSV

    表  3  催化剂的CO加氢反应性能

    Table  3  Catalytic performance of the catalysts

    Catalyst CO Conv. x/% Selectivity s/% Product w/% O/P
    CH4 CO2 CH4 C2-4= C2-40 C5+
    K/1.5Mg-0.2Fe-0.8Al 87.78 15.71 24.36 29.18 39.51 18.63 12.68 2.12
    K/1.5Mg-0.33Fe-0.67Al 82.60 20.22 16.55 30.62 35.92 19.30 14.15 1.86
    K/1.5Mg-0.5Fe-0.5Al 77.86 20.76 14.73 29.48 41.79 15.88 12.85 2.63
    K/1.5Mg-0.67Fe-0.33Al 69.47 22.41 10.06 30.48 47.28 11.35 10.90 4.16
    K/1.5Mg-0.67Fe-0.33Al-H 96.70 12.53 18.18 30.57 38.61 18.43 12.39 2.10
    K/1.5Mg-0.8Fe-0.2Al 73.09 22.57 15.94 32.88 46.18 10.73 10.21 4.30
    K/1.5Mg-0.8Fe-0.2Al-H 74.97 23.50 14.99 33.22 44.40 11.59 10.79 3.83
    K/2.0Mg-0.67Fe-0.33Al 67.54 28.14 8.11 35.52 42.01 12.79 9.68 3.29
    K/3.0Mg-0.67Fe-0.33Al 61.13 29.67 5.90 35.30 41.17 13.52 10.01 3.05
    K/1.5Mg-0.67Fe 81.45 22.04 10.11 27.00 40.98 9.86 22.17 4.16
    K/1.5Mg-0.67Fe-H 93.39 12.64 32.06 20.86 35.87 10.50 32.77 3.41
    reaction conditions: H2/CO=2, GHSV=1 000 h-1, t=320 ℃, p=1.5 MPa;
    下载: 导出CSV
  • [1] TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, IULIAN DUGULAN A, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070):835-838. doi: 10.1126/science.1215614
    [2] JIAO F, LI J J, PAN X L, XIAO J P, LI H B, MA H, WEI M M, PAN Y, ZHOU Z Y, LI M R, MIAO S, LI J, ZHU Y F, XIAO D, HE T, YANG J H, QI F, FU Q, BAO X H. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277):1065-1068. doi: 10.1126/science.aaf1835
    [3] CHENG K, GU B, LIU X L, KANG J C, ZHANG Q H, WANG Y. Direct and highly selective conversion of synthesis gas into lower olefins:design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed, 2016, 55(15):4725-4728. doi: 10.1002/anie.201601208
    [4] ZHONG L S, YU F, AN Y L, ZHAO Y H, SUN Y H, LI Z J, LIN T J, LIN Y J, QI X Z, DAI Y Y, GU L, HU J S, JIN S F, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623):84-87. doi: 10.1038/nature19786
    [5] ZHAI P, XU C, GAO R, LIU X, LI M Z, LI W Z, FU X P, JIA C J, XIE J L, ZHAO M, WANG X P, LI Y W, ZHANG Q W, WEN X D, MA D. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angew Chem Int Ed, 2016, 55(34):9902-9907. doi: 10.1002/anie.201603556
    [6] 于飞, 李正甲, 安芸蕾, 高鹏, 钟良枢, 孙予罕. 合成气催化转化直接制备低碳烯烃研究进展[J]. 燃料化学学报, 2016, 44(7): 801-814. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx201607005&dbname=CJFD&dbcode=CJFQ

    YU Fei, LI Zheng-jia, AN Yun-lei, ZHONG Liang-shu, SUN Yu-han. Research progress in the direct conversion of syngas to lower olefins. J Fuel Chem Technol, 2016, 44(7):801-814. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=rlhx201607005&dbname=CJFD&dbcode=CJFQ
    [7] CAVANI F, TRIFIRÒF, VACCARI A. Hydrotalcite-type anionic clays:Preparation, properties and applications[J]. Catal Today, 1991, 11(2):173-301. doi: 10.1016/0920-5861(91)80068-K
    [8] 高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕.以类水滑石为前驱体的Cu/Zn/Al/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J].物理化学学报, 2014, 30(6):1155-1162. doi: 10.3866/PKU.WHXB201401252

    GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu/Zn/Al/(Zr)/(Y) catalysts from hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin, 2014, 30(6):1155-1162. doi: 10.3866/PKU.WHXB201401252
    [9] FRONZO A D, PIROLA C, COMAZZI A, GALLI F, BIANCHI C L, MICHELE A D, VIVANI R, NOCCHETTI M, BASTIANINI M, BOFFITO D C. Co-based hydrotalcites as new catalysts for the Fischer-Tropsch synthesis process[J]. Fuel, 2014, 119(3):62-69. http://www.sciencedirect.com/science/article/pii/S0016236113010600
    [10] 谢鲜梅. 类水滑石化合物的制备、性能及应用研究[D]. 太原: 太原理工大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10112-2008018215.htm

    XIE Xian-mei. Study on the preparation, performances and application of hydrotalcite-like-compounds[D]. Taiyuan:Taiyuan University of Technology, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10112-2008018215.htm
    [11] 马丽萍, 张建利, 马清祥, 范素兵, 赵天生. K/MgFeZn-HTLcs催化CO加氢制低碳烯烃性能研究[J].燃料化学学报, 2016, 44(4):449-456. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18812.shtml

    MA Li-ping, ZHANG Jian-li, MA Qing-xiang, FAN Su-bing, ZHAO Tian-sheng. Direct synthesis of light olefins from CO hydrogenation over K/MgFeZn-HTLcs catalysts[J]. J Fuel Chem Technol, 2016, 44(4):449-456. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract18812.shtml
    [12] VISCONTI C G, LIETTI L, TRONCONI E, FORZATTI P, ZENNARO R, FINOCCHIO E. Fischer-Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas[J], Appl Catal A:Gen, 2009, 355(1/2):61-68. http://www.sciencedirect.com/science/article/pii/S0926860X08007308
    [13] PARK S J, BAE J W, OH J H, CHARY K V R, SAI PRASAD P S, JUN K W, RHEE Y W. Influence of bimodal pore size distribution of Ru/Co/ZrO2-Al2O3 during Fischer-Tropsch synthesis in fixed-bed and slurry reactor[J]. J Mol Catal A:Chem, 2009, 298(1):81-87. http://www.sciencedirect.com/science/article/pii/S1381116908004639
    [14] TOSHIYUKI HIBINO, YASUMASA Y, KATSUNORI K, ATSUMU T. Decarbonation behavior of Mg-A1-CO3 hydrotalcite-like compounds during heat treatment[J]. Clay Clay Miner, 1995, 43(4):427-432. doi: 10.1346/CCMN
    [15] VALENTE J S, PRINCE J, MAUBERT A M, LARTUNDO-ROJAS L, ANGEL P D, FERRAT G, HERNANDEZ J G, LOPEZ-SALINAS E. Physicochemical study of nanocapsular layered double hydroxides evolution[J]. J Phys Chem C, 2009, 113(14):5547-5555. doi: 10.1021/jp810293y
    [16] ZHAO M Q, ZHANG Q, ZHANG W, HUANG J Q, ZHANG Y H, SU D S, WEI F. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides[J]. J Am Chem Soc, 2010, 132(42):14739-14741. doi: 10.1021/ja106421g
    [17] JOZWIAK W K, KACZMAREK E, MANIECKI T P, IGNACZAK W, MANIUKIEWICZ W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres[J]. Appl Catal A:Gen, 2007, 326(1):17-27. doi: 10.1016/j.apcata.2007.03.021
    [18] LI S, LI A, KRISHNAMOORTHY S, IGLESIA E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2001, 77(4):197-205. doi: 10.1023/A:1013284217689
    [19] SUO H, WANG S, ZHANG C, XU J, WU B, YANG Y, XIANG H, LI Y. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2012, 286(2):111-123. http://www.sciencedirect.com/science/article/pii/S0021951711003599
    [20] GAO X, SHEN J, HSIA Y, CHEN Y. Reduction of supported iron oxide studied by temperature-programmed reduction combined with mössbauer spectroscopy and X-ray diffraction[J]. J Chem Soc Faraday Trans, 1993, 89(7):1079-1084. doi: 10.1039/FT9938901079
    [21] CHEN K, FAN Y, HU Z, YAN Q. Carbon monoxide hydrogenation on Fe2O3/ZrO2 catalysts[J]. Catal Lett, 1996, 36(3/4):139-144. doi: 10.1007/BF00807610
    [22] QIN S D, ZHANG C H, XU J, YANG Y, XIANG H W, LI Y W. Fe-Mo interactions and their influence on Fischer-Tropsch synthesis performance[J]. Appl Catal A:Gen, 2011, 392(1/2):118-126. http://www.sciencedirect.com/science/article/pii/S0926860X10007386
    [23] HUO C F, WU B S, GAO P, YANG Y, LI Y W, JIAO H J. The mechanism of potassium promoter:Enhancing the stability of active surfaces[J]. Angew Chem Int Edit, 2011, 50(32):7403-7406. doi: 10.1002/anie.v50.32
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  36
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20
  • 修回日期:  2017-09-26
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-12-10

目录

    /

    返回文章
    返回