留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane

XU Yan DU Xi-hua LI Jing WANG Peng ZHU Jie GE Feng-juan ZHOU Jun SONG Ming ZHU Wen-you

徐艳, 堵锡华, 李靖, 王鹏, 朱捷, 葛奉娟, 周俊, 宋明, 朱文友. SiO2和Al2O3负载的Ni基催化剂在甲烷干重整中的催化性能差异[J]. 燃料化学学报(中英文), 2019, 47(2): 199-208.
引用本文: 徐艳, 堵锡华, 李靖, 王鹏, 朱捷, 葛奉娟, 周俊, 宋明, 朱文友. SiO2和Al2O3负载的Ni基催化剂在甲烷干重整中的催化性能差异[J]. 燃料化学学报(中英文), 2019, 47(2): 199-208.
XU Yan, DU Xi-hua, LI Jing, WANG Peng, ZHU Jie, GE Feng-juan, ZHOU Jun, SONG Ming, ZHU Wen-you. A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 199-208.
Citation: XU Yan, DU Xi-hua, LI Jing, WANG Peng, ZHU Jie, GE Feng-juan, ZHOU Jun, SONG Ming, ZHU Wen-you. A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2019, 47(2): 199-208.

SiO2和Al2O3负载的Ni基催化剂在甲烷干重整中的催化性能差异

基金项目: 

the National Natural Science Foundation of China 21703194

the Natural Science Foundation of Jiangsu Province BK20171168

the Natural Science Foundation of Jiangsu Province BK20171169

Natural Science Foundation of Jiangsu Higher Education Institutions of China 17KJB530010

Natural Science Foundation of Jiangsu Higher Education Institutions of China 17KJB150038

Natural Science Foundation of Jiangsu Higher Education Institutions of China 18KJA430015

Key Research Project of Social Development of Xuzhou KC17154

Research Project of Xuzhou University of Technology XKY2017217

详细信息
  • 中图分类号: O643.3

A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane

Funds: 

the National Natural Science Foundation of China 21703194

the Natural Science Foundation of Jiangsu Province BK20171168

the Natural Science Foundation of Jiangsu Province BK20171169

Natural Science Foundation of Jiangsu Higher Education Institutions of China 17KJB530010

Natural Science Foundation of Jiangsu Higher Education Institutions of China 17KJB150038

Natural Science Foundation of Jiangsu Higher Education Institutions of China 18KJA430015

Key Research Project of Social Development of Xuzhou KC17154

Research Project of Xuzhou University of Technology XKY2017217

More Information
  • 摘要: CH4与CO2干重整反应对于环境保护和天然气资源的合理利用具有重要意义。SiO2和Al2O3是适用于甲烷干重整反应的两种典型的催化剂载体。为了阐明这两种载体对催化剂性能的影响,本研究采用等体积浸渍法制备了Ni/Al2O3和Ni/SiO2催化剂,并利用BET、TEM、H2-TPR、XRD、TG和Raman等技术对还原和反应后的催化剂进行了表征。结果表明,由于载体的性质不同,Ni基催化剂在甲烷干重整中的催化性能也不同。Ni/SiO2催化剂的初始活性较高,但由于其金属-载体相互作用较弱,催化稳定性较差,在800℃下反应15h其催化活性急剧下降;较弱的金属-载体相互作用使得Ni/SiO2催化剂上的Ni颗粒较大,有利于积炭前驱物种的生成,导致催化剂快速失活。而对于Ni/Al2O3催化剂,金属-载体相互作用较强,Ni颗粒较小,但由于Ni与Al2O3生成了NiAlxOy物种,有效活性位减少,其催化活性相对较低,但催化稳定性较好,干重整反应进行50h其活性保持稳定;Ni与Al2O3之间较强的相互作用有利于形成小且稳定的Ni粒子,能减少积炭,因而具有优异的催化稳定性。
  • Figure  1  Conversions of CH4 and CO2 and molar ratio of H2/CO as a function of time on stream over the Ni/SiO2 and Ni/Al2O3 catalysts in DRM at 800 ℃, with a GHSV of 48000 mL/(gcat· h) and a CH4:CO2:N2 ratio of 9:9:2

    Figure  2  N2 adsorption and desorption isotherms and size distribution (inset) of the reduced Ni/SiO2 catalyst (a), reduced Ni/Al2O3 catalyst (b), spent Ni/SiO2 catalyst (c), and spent Ni/Al2O3 catalyst (d)

    Figure  3  TEM images and the Ni particle size distribution of the freshly reduced catalysts

    (a) and (c): Ni/SiO2 catalyst; (b) and (d): Ni/Al2O3 catalyst

    Figure  4  H2-TPR profiles of the Ni/SiO2 and Ni/Al2O3 catalysts

    Figure  5  XRD patterns of the reduced and spent Ni/SiO2 and Ni/Al2O3 catalysts

    Figure  6  TGA profiles (a) and Raman spectra (b) of the spent catalysts after 50 h stability test for DRM

    Figure  7  TEM images of the spent catalysts after 50 h stability test

    (a) and (b): Ni/Al2O3 catalyst; (c) and (d): Ni/SiO2 catalyst

    Figure  8  Scheme of the preparation processes for the Ni/SiO2 and Ni/Al2O3 catalyst

    Table  1  Textural properties of various catalysts

    Catalyst ABET/
    (m2·g-1)
    vpore/
    (cm3·g-1)
    Pore diameter
    d/nm
    vpore/ABET
    (10-9 m)
    Reduced Ni/SiO2 162.6 0.99 15.5 6.1
    Reduced Ni/Al2O3 159.3 0.34 6.2 2.1
    Spent Ni/SiO2 89.9 0.45 17.5 -
    Spent Ni/Al2O3 152.1 0.35 7.4 -
    下载: 导出CSV
  • [1] CABALLERO A, PEREZ P J. Methane as raw material in synthetic chemistry:The final frontier[J]. Chem Soc Rev, 2013, 42(23):8809-8820. doi: 10.1039/c3cs60120j
    [2] OLSBYE U. Single-pass catalytic conversion of syngas into olefins via methanol[J]. Angew Chem Int Ed, 2016, 55(26):7294-7295. doi: 10.1002/anie.201603064
    [3] VENVIK H J, YANG J. Catalysis in microstructured reactors:Short review on small-scale syngas production and further conversion into methanol, DME and Fischer-Tropsch products[J]. Catal Today, 2017, 285:135-146. doi: 10.1016/j.cattod.2017.02.014
    [4] ALI K A, ABDULLAH A Z, MOHAMED A R. Recent development in catalytic technologies for methanol synthesis from renewable sources:A critical review[J]. Renewable Sustainable Energy Rev, 2015, 44(32):508-518. https://www.sciencedirect.com/science/article/pii/S1364032115000209
    [5] HU J, YU F, LU Y. Application of Fischer-Tropsch synthesis in biomass to liquid conversion[J]. Catalysts, 2012, 2(2):303-326. doi: 10.3390/catal2020303
    [6] USMAN M, DAUD W M A W, ABBAS H F. Application of Fischer-Tropsch synthesis in biomass to liquid conversion[J]. Renewable Sustainable Energy Rev, 2015, 45:710-744. doi: 10.1016/j.rser.2015.02.026
    [7] SHAH Y T, GARDNER T H. Dry reforming of hydrocarbon feedstocks[J]. Catal Rev, 2014, 56(4):476-536. doi: 10.1080/01614940.2014.946848
    [8] MURAZA O, GALADIMA A. A review on coke management during dry reforming of methane[J]. Int J Energy Res, 2015, 39(9):1196-1216. doi: 10.1002/er.v39.9
    [9] ABDULLAH B, GHANI N A A, VO D V N. Recent advances in dry reforming of methane over Ni-based catalysts[J]. J Clean Prod, 2017, 162:170-185. doi: 10.1016/j.jclepro.2017.05.176
    [10] ZHANG X, YANG C, ZHANG Y, XU Y, SHANG S, YIN Y. Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane[J]. Int J Hydrogen Energy, 2015, 40(46):16115-16126. doi: 10.1016/j.ijhydene.2015.09.150
    [11] DAS S, ASHOK J, BIAN Z, DEWANGAN N, WAI M H, DU Y, BORGNA A, HIDAJAT K, KAWI S. Silica-ceria sandwiched ni core-shell catalyst for low temperature dry reforming of biogas:Coke resistance and mechanistic insights[J]. Appl Catal B:Environ, 2018, 230:220-236. doi: 10.1016/j.apcatb.2018.02.041
    [12] DAI C, ZHANG S, ZHANG A, SONG C, SHI C, GUO X. Hollow zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane[J]. J Mater Chem A, 2015, 3(32):16461-16468. doi: 10.1039/C5TA03565A
    [13] WANG C Z, SI L J, LI H, WEN X, SUN N N, ZHAO N, WEI W, SUN Y H. Template-free one-pot synthesis of mesoporous Ni-CaO-ZrO2 catalyst and its application in CH4-CO2 reforming[J]. J Fuel Chem Technol, 2013, 41(10):1204-1209. doi: 10.1016/S1872-5813(13)60049-3
    [14] WANG C Z, SUN N N, ZHAO N, WEI W, ZHAO Y X. Template-free preparation of bimetallic mesoporous Ni-Co-CaO-ZrO2 catalysts and their synergetic effect in dry reforming of methane[J]. Catal Today, 2017, 281:268-275. doi: 10.1016/j.cattod.2016.03.026
    [15] WANG C Z, SUN N N, ZHAO N, WEI W, SUN Y H, SUN C G, LIU H, SNAPE C E. Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane:A study under different feeding compositions[J]. Fuel, 2015, 143:527-535. doi: 10.1016/j.fuel.2014.11.097
    [16] HUANG X, JI C, WANG C Z, XIAO F K, ZHAO N, SUN N N, WEI W, SUN Y H. Ordered mesoporous CoO-NiO-Al2O3 bimetallic catalysts with dual confinement effects for CO2 reforming of CH4[J]. Catal Today, 2017, 281:241-249. doi: 10.1016/j.cattod.2016.02.064
    [17] HUANG X, XUE G X, WANG C Z, ZHAO N, SUN N N, WEI W, SUN Y H. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane:Effect of Ni embedding and Y2O3 promotion[J]. Catal Sci Technol, 2016, 6:449-459. doi: 10.1039/C5CY01171J
    [18] WANG C Z, QIU Y, ZHANG X M, ZHANG Y, SUN N N, ZHAO Y X. Geometric art of a Ni@silica nano-capsule catalyst with superb methane dry reforming stability:Enhanced confinement effect over nickel site anchoring inside capsule shell with appropriate inner cavity[J]. Catal Sci Technol, 2018, 8:4877-4890. doi: 10.1039/C8CY01158C
    [19] YANG W W, LIU H M, LI Y M, ZHANG J, WU H, HE D H. Properties of yolk-shell structured Ni@SiO2 nanocatalyst and its catalytic performance in carbon dioxide reforming of methane to syngas[J]. Catal Today, 2016, 259:438-445. doi: 10.1016/j.cattod.2015.04.012
    [20] DAS S, ASHOK J, BIAN Z, DEWANGAN N, WAI M H, DU Y, BORGNA A, HIDAJAT K, KAWI S. Silica-ceria sandwiched ni core-shell catalyst for low temperature dry reforming of biogas:Coke resistance and mechanistic insights[J]. Appl Catal B:Environ, 2018, 230:220-236. https://www.sciencedirect.com/science/article/pii/S0926337318301620
    [21] WANG Y S, FANG Q, SHEN W H, ZHU Z Q, FANG Y J. (Ni/MgAl2O4)@SiO2 core-shell catalyst with high coke-resistance for the dry reforming of methane[J]. React Kinet Mech Catal, 2018, 125(1):127-139. doi: 10.1007/s11144-018-1404-2
    [22] PU J L, LUO Y, WANG N N, BAO H X, WANG X H, QIAN E W. Ceria-promoted Ni@Al2O3 core-shell catalyst for steam reforming of acetic acid with enhanced activity and coke resistance[J]. Int J Hydrogen Energy, 2018, 43(6):3142-3153. doi: 10.1016/j.ijhydene.2017.12.136
    [23] CHAI Y, FU Y, FENG H, KONG W, YUAN C, PAN B, ZHANG J, SUN Y. Ni-based perovskite catalyst with a bimodal size distribution of Ni Particles for dry reforming of methane[J]. ChemCatChem, 2018, 9(10):2078-2086.
    [24] BAUDOUIN D, RODEMERCK U, KRUMEICH F, MALLMANN A D, SZETO K C, MÉNARD H, YEYRE L, CANDY J P, WEBB P B, THIEULEUX C, COPÉRET C. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles[J]. J Catal, 2013, 297(1):27-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a3a8aeef1975d7b6249cc33c7a11629
    [25] GONZALEZDELACRUZ V M, PEREÑIGUEZ R, TERNERO F, HOLGADO J P, CABALLERO A. Modifying the size of nickel metallic particles by H2/CO treatment in Ni/ZrO2 methane dry reforming catalysts[J]. ACS Catal, 2013, 1(2):82-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ed03165aba6565ba700abd704571e19
    [26] DAOURA O, KAYDOUH M N, EI-HASSAN N, MASSIANI P, LAUNAY F, BOUTROS M. Mesocellular silica foam-based Ni catalysts for dry reforming of CH4 by CO2[J]. J CO2 Util, 2018, 24:112-119. doi: 10.1016/j.jcou.2017.12.010
    [27] KIM W Y, LEE Y H, PARK H, CHOI Y H, LEE M H, LEE J S. Coke tolerance of Ni/Al2O3 nanosheet catalyst for dry reforming of methane[J]. Catal Sci Technol, 2016, 6(7):2060-2064. doi: 10.1039/C6CY00017G
    [28] AL-FATESH A S, ARAFAT Y, ATIA H, IBRAHIM A A, HA Q L M, SCHNEIDER M, M-POHL M, FAKEEHS A H. CO2 reforming of methane to produce syngas over Co-Ni/SBA-15 catalyst:Effect of support modifiers (Mg, La and Sc) on catalytic stability[J]. J CO2 Util, 2017, 21:395-404. doi: 10.1016/j.jcou.2017.08.001
    [29] MO W, MA F, LIU Y, LIU J, ZHONG M, NULAHONG A. Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas[J]. Int J Hydrogen Energy, 2015, 40(46):16147-16158. doi: 10.1016/j.ijhydene.2015.09.149
    [30] JEONG M G, KIM S Y, KIM D H, HAN S W, KIM I H, LEE M, HWANG Y K, KIM Y D. High-performing and durable MgO/Ni catalysts via atomic layer deposition for CO2 reforming of methane (CRM)[J]. Appl Catal A:Gen, 2016, 515:45-50. doi: 10.1016/j.apcata.2016.01.032
    [31] ZENG S, ZHANG X, FU X, ZHANG L, SU H, PAN H. Co/CexZr1-xO2 solid-solution catalysts with cubic fluorite structure for carbon dioxide reforming of methane[J]. Appl Catal B:Environ, 2013, 136-137:308-316. doi: 10.1016/j.apcatb.2013.02.019
    [32] SAHA B, KHAN A, IBRAHIM H, IDEM R. Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas[J]. Fuel, 2014, 120(1):202-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d0b2771c82d3e629eec58145fc3a1535
    [33] CHEN X, JIANG J, TIAN S, LI K. Biogas dry reforming for syngas production:Catalytic performance of nickel supported on waste-derived SiO2[J]. Catal Sci Technol, 2015, 5(2):860-868. doi: 10.1039/C4CY01126K
    [34] SUN G B, HIDAJAT K, WU X S, KAWI S. A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts[J]. Appl Catal B:Environ, 2008, 81(3):303-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=71219d4aa161b5776871cae263b1ce46
    [35] OEMAR U, KATHIRASER Y, MO L, HO X K, KAWI S. CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts:Mechanism and kinetic modelling[J]. Catal Sci Technol, 2016, 6(4):1173-1186. doi: 10.1039/C5CY00906E
    [36] GOULA M A, CHARISIOU N D, PAPAGERIDIS K N, DELIMITIS A, PACHATOURIDOU E, ILIOPOULOU E F. Nickel on alumina catalysts for the production of hydrogen rich mixtures via the biogas dry reforming reaction:Influence of the synthesis method[J]. Int J Hydrogen Energy, 2015, 40(30):9183-9200. doi: 10.1016/j.ijhydene.2015.05.129
    [37] LI Z, KAWI S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4:Influence of Ni precursors on structure, sintering and carbon resistance[J]. Catal Sci Technol, 2018, 8(7):1915-1922. doi: 10.1039/C8CY00024G
    [38] ZHANG C, YUE H, HUANG Z, LI S, WU G, MA X, GONG J. Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2:Enhanced metal-support interaction and catalytic stability[J]. ACS Sustainable Chem Eng, 2013, 1(1):161-173. doi: 10.1021/sc300081q
    [39] LIU C J, YE J Y, JIANG J J, PAN Y X. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. ChemCatChem, 2011, 3(3):529-541. doi: 10.1002/cctc.v3.3
    [40] NUMAGUCHI T, EIDA H, SHOJI K. Reduction of NiAl2O4containing catalysts for steam methane reforming reaction[J]. Int J Hydrogen Energy, 1997, 22(12):1111-1115. doi: 10.1016/S0360-3199(97)00007-4
    [41] YANG M, JIN P, FAN Y, HUANG C, ZHANG N, WENG W, CHEN M, WAN H. Ammonia-assisted synthesis towards a phyllosilicate-derived high-dispersed and long-lived Ni/SiO2 catalyst[J]. Catal Sci Technol, 2015, 5(12):5095-5099. doi: 10.1039/C5CY01361E
    [42] WO H, DEARN K D, SONG R, HU E, XU Y, HU X. Morphology, composition and structure of carbon deposits from diesel and biomass oil/diesel blends on a pintle-type fuel injector nozzle[J]. Tribol Int, 2015, 91:189-196. doi: 10.1016/j.triboint.2015.07.003
    [43] ALEKSANDROV H A, PEGIOS N, PALKOVITS R, SIMENONV K, VAYSSILOV G N. Elucidation of the higher coking resistance of small versus large nickel nanoparticles in methane dry reforming via computational modeling[J]. Catal Sci Technol, 2017, 7(15):3339-3347. doi: 10.1039/C7CY00773F
    [44] WANG C Z, SUN N N, ZHAO N, WEI W, ZHANG J, ZHAO T J, SUN Y H, SUN C G, LIU H, SNAPE C E. The properties of individual carbon residuals and their influence on the deactivation of Ni-CaO-ZrO2 catalysts in CH4 dry reforming[J]. ChemCatChem, 2014, 6(2):640-648. doi: 10.1002/cctc.v6.2
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  32
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-27
  • 修回日期:  2018-12-09
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-02-10

目录

    /

    返回文章
    返回