留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宝日希勒褐煤在合成气与复合溶剂系统下的液化性能研究

童国通 吴荣生

童国通, 吴荣生. 宝日希勒褐煤在合成气与复合溶剂系统下的液化性能研究[J]. 燃料化学学报(中英文), 2019, 47(6): 661-667.
引用本文: 童国通, 吴荣生. 宝日希勒褐煤在合成气与复合溶剂系统下的液化性能研究[J]. 燃料化学学报(中英文), 2019, 47(6): 661-667.
TONG Guo-tong, WU Rong-sheng. Liquefaction characteristics of Baorixile lignite with syngas and complex solvent[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 661-667.
Citation: TONG Guo-tong, WU Rong-sheng. Liquefaction characteristics of Baorixile lignite with syngas and complex solvent[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 661-667.

宝日希勒褐煤在合成气与复合溶剂系统下的液化性能研究

基金项目: 

杭州市属高校绿色精细化工技术研究与技术转化重点实验室项目 2015ZD12

详细信息
  • 中图分类号: TQ536.1;TQ530.2

Liquefaction characteristics of Baorixile lignite with syngas and complex solvent

Funds: 

Hangzhou Key Laboratory of Green Fine Chemical Engineering Research and Technical Conversion 2015ZD12

More Information
  • 摘要: 在合成气(CO+H2)与复合溶剂(水+有机溶剂)液化系统下研究了气氛、温度、催化剂类型对宝日希勒褐煤转化率、油气水产率和CO转化率等液化特征的影响,从而探讨其液化性能。结果表明,在高含水复合溶剂系统中,合成气气氛、反应温度430-450℃适宜宝日希勒褐煤液化转化,转化率可达到81.15%,油气水产率达到71.53%。该液化系统下,含铁、碱和硫复合型催化剂能有效地提高液化转化率和油气水产率,在430℃催化液化下褐煤转化率达92.27%,油气水产率达79.39%。该催化剂有效促进了煤中大分子的裂解和系统中水煤气变换反应进程,沥青质减少,油含量增多。液化油中多环芳烃衍生物在催化液化过程中向单环芳烃衍生物和烷烯烃转化,分子量降低,提高了油品质量。
  • 图  1  液固混合物的分离流程示意图

    Figure  1  Procedures for separation of liquid-solid mixtures reacted

    图  2  温度对CO和H2转化率的影响

    Figure  2  Effect of temperature on conversions of CO and H2

    图  3  温度对气体组成的影响

    Figure  3  Effect of temperature on the composition of gas

    图  4  催化剂对液化气体产物组成的影响

    Figure  4  Effect of catalysts on the composition of gas

    图  5  催化剂对气体转化率的影响

    Figure  5  Effect of catalysts on conversions of CO and H2

    图  6  正己烷可溶物的色谱图

    Figure  6  Gas chromatogram of HEX soluble fraction

    ●: alkenes; ■: monocyclic aromatic hydrocarbons;
    ▲: ethers; ◆: polycyclic aromatic hydrocarbons and their derivatives

    表  1  煤样的工业分析、元素分析及岩相分析

    Table  1  Proximate, ultimate and petrographic analysis of coal

    Proximate analysis w/% Ultimate analysis w/% H/C
    (atomic ratio)
    Mad Ad Vdaf FCdaf Cdaf Hdaf Ndaf St, d Odaf*
    3.52 11.31 43.50 56.50 72.27 4.97 1.10 0.50 21.09 0.83
    Petrographic analysis φ/% RMAXO
    vitrinite inertinite exinite maceral
    88.44 8.03 1.57 1.96 0.34
    St, d: total sulfur on dry basis; *: by difference; φ: percent of volume
    下载: 导出CSV

    表  2  不同气氛下褐煤液化转化率及产物产率

    Table  2  Liquefaction conversion and product yields of lignite under different atmospheres

    Atmosphere Conversion x/% Yield w/%
    YdPA YdAS YdOGM
    H2 79.46 9.00 7.05 63.41
    N2 76.15 9.31 8.19 58.65
    CO 83.44 9.52 7.51 66.41
    Syngas 81.15 4.83 4.79 71.53
    下载: 导出CSV

    表  3  不同温度下褐煤液化转化率及产物产率

    Table  3  Liquefaction conversion and product yields of lignite under different temperatures

    Temperature t/℃ Conversion x/% Yield w/%
    YdPA YdAS YdOGM
    400 73.73 24.12 13.1 36.51
    430 78.55 12.8 9.68 56.07
    450 81.15 4.83 4.79 71.53
    下载: 导出CSV

    表  4  不同催化剂下褐煤液化转化率及产物产率

    Table  4  Liquefaction conversion and product yields of lignite under different catalysts

    Catalyst Conversion x/% Yield w/%
    YdPA YdAS YdOGM
    no catalyst 64.67 13.15 13.76 37.76
    A 67.66 11.17 9.19 47.3
    B 69.11 11.02 10.36 47.73
    C 78.55 12.8 9.68 56.07
    D 74.57 8.31 6.79 59.47
    E 92.27 7.29 5.59 79.39
    下载: 导出CSV

    表  5  液化油的液相组成分及分类

    Table  5  Compound distribution and classification of oil

    Catalyst Relative content w/%
    alkanes olefins heterocycles phenols MAHD PAHD
    no catalyst 6.38 6.79 10.83 30.66 45.35
    C 23.33 1.98 9.80 30.51 34.48
    E 28.58 0.81 7.75 36.09 26.77
    MAHD: monocyclic aromatic hydrocarbons and derivatives; PAHD: polycyclic aromatic hydrocarbons and derivatives
    下载: 导出CSV
  • [1] FISCHER F, SCHRADER H. The origin and chemical structure of coal[J]. Brennstoff Chem, 1921, 2:37-45. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_64cc347441b395ebd16b96675789d27e
    [2] ZHU M, WACHS I E. Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction:A review[J]. ACS Catal, 2016, 6(2):722-732. doi: 10.1021/acscatal.5b02594
    [3] BIANCO A D, PIERO G D, SERENELLINI S. Conversion of coal in CO/H2O base system:Interaction between water-gas shift reaction catalysts and coal mineral matter[J]. Fuel, 1988, 67(6):874-875. doi: 10.1016/0016-2361(88)90167-6
    [4] TAKEMURA Y, OUCHI K. Catalytic liquefaction of various coals using a mixture of carbon monoxide and water[J]. Fuel, 1983, 62(10):1133-1137. doi: 10.1016/0016-2361(83)90052-2
    [5] HATA K A, WATANABE Y, WADAK, WADA K, MITSUDO T A. Iron sulfate/sulfur-catalyzed liquefaction of Wandoan coal using syngas-water as a hydrogen source[J]. Fuel Process Technol, 1998, 56(3):291-304. doi: 10.1016/S0378-3820(98)00058-7
    [6] LI Q L, CHEN Z, ZHOU Q, LI L, WU S Y. Shengli lignite liquefaction under syngas and complex solvent[J]. J Fuel Chem Technol, 2016, 44:257-262. doi: 10.1016/S1872-5813(16)30014-7
    [7] 冯婉璐, 吴诗勇, 尤全, 吴幼青, 郑化安, 闵小建.合成气气氛下含水量对锡林浩特煤液化性能的影响[J].华东理工大学学报(自然科学版), 2017, 43(2):156-161. http://d.old.wanfangdata.com.cn/Periodical/hdlgdxxb201702002

    FENG Wan-lu, WU Shi-yong, YOU Quan, WU You-qing, ZHENG Hua-an, MIN Xiao-jian. Effect of moisture amount on liquefaction of Xilinhaote coal under syngas[J]. J East China Univ Technol:Nat Sci Ed, 2017, 43(2):156-161. http://d.old.wanfangdata.com.cn/Periodical/hdlgdxxb201702002
    [8] YOU Q, WU S Y, WU Y Q, HUANG S, GAO J S, SHANG J X, MIN X J, ZHENG H A. Product distributions and characterizations for integrated mild-liquefaction and carbonization of low rank coals[J]. Fuel Process Technol, 2017, 156:54-161. doi: 10.1016/j.fuproc.2016.09.022
    [9] BIANCO A D, GIRARDI E, STROPPA F. Liquefaction of Sulcis subbituminous coal in a CO/water/base system[J]. Fuel, 1990, 69(2):240-244. doi: 10.1016/0016-2361(90)90180-X
    [10] 王伟东, 邹春玉, 赵建涛.高温再热对依兰煤低温干馏产物及结焦行为的影响[J].煤化工, 2010, 38(2):22-26. doi: 10.3969/j.issn.1005-9598.2010.02.005

    WANG Wei-dong, ZOU Chun-yu, ZHAO Jian-tao. Impact of high-temperature and re-heating on low-temperature pyrolysis products and coking of Yilan coal[J]. Coal Chem Ind, 2010, 38(2):22-26. doi: 10.3969/j.issn.1005-9598.2010.02.005
    [11] 朱培之, 高晋生.煤化学[M].上海:上海科学技术出版社, 1984.

    ZHU Pei-zhi, GAO Jin-sheng. Coal Chemistry[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984.
    [12] CASSIDY P J, JACKSON W R, LARKINS F P, SAKUROVS R J, SUTTON J F. Hydrogenation of brown coal:8. The effect of added promoters and water on the liquefaction of Victorian brown coal using hydrogen, carbon monoxide and synthesis gas[J]. Fuel, 1986, 65(3):374-379. doi: 10.1016/0016-2361(86)90298-X
    [13] ZHAO Y Q, ZHANGM, CUI X T, DONG D L, WANG Q, ZHANG Y F. Converting lignite to caking coal via hydro-modification in a subcritical water-CO system[J]. Fuel, 2016, 167:1-8. doi: 10.1016/j.fuel.2015.11.028
    [14] PINTO F, GULYURTLU I, LOBO L S, CABRITA I. The role of catalyst impregnation and solvent type in improving liquefaction efficiencies[J]. Coal Sci Technol, 1995, 24(6):1307-1310. http://www.sciencedirect.com/science/article/pii/S0167944906800431
    [15] JIN L J, HAN K M, WANG J Y, HU H Q. Direct liquefaction behaviors of Bulianta coal and its macerals[J]. Fuel Process Technol, 2014, 128:232-237. doi: 10.1016/j.fuproc.2014.07.033
    [16] KANEKO T, SUGITA S, TAMURA M, SHIMASAKI K, MAKINO E, SILALAHI L H. Highly active limonite catalysts for direct coal liquefaction[J]. Fuel, 2002, 81(11):1541-1549. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf2e4a87b2e6e5067cf5b0c714c0480d
    [17] 黄传荣, 吴诗勇, 聂立, 覃小刚, 吴幼青, 高晋生.铁基催化剂对胜利褐煤液化的影响[J].华东理工大学学报(自然科学版), 2014, 40(1):21-25. doi: 10.3969/j.issn.1006-3080.2014.01.004

    HUANG Chuan-rong, WU Shi-yong, NIE Li, QIN Xiao-gang, WU You-qing, GAO Jin-sheng. Effects of iron-based catalysts on liquefaction of Shengli lignite[J]. J East China Univ Technol:Nat Sci Ed, 2014, 40(1):21-25. doi: 10.3969/j.issn.1006-3080.2014.01.004
    [18] LI X, ZONG Z M, MA W W, CAO J P, MAYYAS M, WEI Z H, LI Y, YAN H L, WANG D, YANG R, WEI X Y. Multifunctional and highly active Ni/microfiber attapulgite for catalytic hydroconversion of model compounds and coal tars[J]. Fuel Process Technol, 2015, 131:39-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=334a78e7a75dfff1120198cebe66cec0
    [19] 耿莉莉, 周岐雄, 马凤云, 冷帅.南台子煤催化加氢热解产物分布的初步研究[J].煤炭转化, 2012, 35(1):1-3. doi: 10.3969/j.issn.1004-4248.2012.01.001

    GENG Li-li, ZHOU Qi-xiong, MA Feng-yun, LENG Shuai. Study on the distributions of the products of Nantaizi coal during catalytic hydropyrolysis[J]. Coal Convers, 2012, 35(1):1-3. doi: 10.3969/j.issn.1004-4248.2012.01.001
    [20] WATANABE R, SAKAMOTO Y, YAMAMURO K, TAMURA S, KIKUCHI E, SEKINE Y. Role of alkali metal in a highly active Pd/alkali/Fe2O3 catalyst for water gas shift reaction[J]. Appl Catal A:Gen, 2013, 457(4):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caecc9e640d567d80b7f55e1b0882bc8
    [21] 羊丽君, 潘铁英, 史新梅, 蔺华林, 张德祥, 高晋生. 1H NMR和GC-MS法分析表征煤液化油[J].分析测试学报, 2007, 26(4):488-491. doi: 10.3969/j.issn.1004-4957.2007.04.008

    YANG Li-jun, PAN Tie-ying, SHI Xin-mei, LIN Hua-lin, ZHANG De-xiang, GAO Jin-sheng. Characterization of coal liquefaction oil by 1H NMR and GC-MS[J]. J Instrum Anal, 2007, 26(4):488-491. doi: 10.3969/j.issn.1004-4957.2007.04.008
    [22] MA W W, ZONG Z M, LI X, WEI X Y. Catalytic hydrocracking of extraction residue from Huolinguole lignite over Fe3O4/SiO2/Mg2Si magnetic solid superbase catalyst[C]. Academic Forum for Graduate Students of "Mechanical Engineering and Thermal Engineering" in Shanghai, 2014.
    [23] 吴秀章, 石玉林, 徐春明.煤炭直接液化油品加氢改质中试研究[J].石油学报(石油加工), 2009, 25(2):156-161. doi: 10.3969/j.issn.1001-8719.2009.02.004

    WU Xiu-zhang, SHI Yu-lin, XU Chun-ming. Hydro-upgrading pilot test of direct coal liquefaction effluent[J]. Acta Pet Sin:Pet Process Sect, 2009, 25(2):156-161. doi: 10.3969/j.issn.1001-8719.2009.02.004
    [24] SHAN X G, SHU G P, LI K J, ZHANG X W, WANG H X, CAO X P, JIANG H B, WEN H X. Effect of hydrogenation of liquefied heavy oil on direct coal liquefaction[J]. Fuel, 2017, 194:291-296. doi: 10.1016/j.fuel.2017.01.034
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  75
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-07
  • 修回日期:  2019-04-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-06-10

目录

    /

    返回文章
    返回