留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

药渣热解过程NOx前驱物生成特征及规律研究

詹昊 阴秀丽 黄艳琴 张晓鸿 袁洪友 谢建军 吴创之

詹昊, 阴秀丽, 黄艳琴, 张晓鸿, 袁洪友, 谢建军, 吴创之. 药渣热解过程NOx前驱物生成特征及规律研究[J]. 燃料化学学报(中英文), 2017, 45(3): 279-288.
引用本文: 詹昊, 阴秀丽, 黄艳琴, 张晓鸿, 袁洪友, 谢建军, 吴创之. 药渣热解过程NOx前驱物生成特征及规律研究[J]. 燃料化学学报(中英文), 2017, 45(3): 279-288.
ZHAN Hao, YIN Xiu-li, HUANG Yan-qin, ZHANG Xiao-hong, YUAN Hong-you, XIE Jian-jun, WU Chuang-zhi. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 279-288.
Citation: ZHAN Hao, YIN Xiu-li, HUANG Yan-qin, ZHANG Xiao-hong, YUAN Hong-you, XIE Jian-jun, WU Chuang-zhi. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 279-288.

药渣热解过程NOx前驱物生成特征及规律研究

基金项目: 

国家自然科学基金 51661145022

国家自然科学基金 51676195

详细信息
    通讯作者:

    吴创之, E-mail:wucz@ms.giec.ac.cn

  • 中图分类号: TK6

Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues

Funds: 

the National Natural Science Foundation of China 51661145022

the National Natural Science Foundation of China 51676195

  • 摘要: 以凉茶药渣(HTW)和青霉素菌渣(PMW)为对象,结合热重(TGA)和X射线光电子能谱(XPS)表征,在水平管式反应器上对比研究了热解NOx前驱物的生成特征,考察了热力因素和燃料理化特性的影响。结果表明,蛋白质N为主要原料N结构,HTW占全部,PMW超过80%,决定了主导NOx前驱物为NH3;热力因素不改变此主导性,但会影响前驱物生成路径,改变组分比例及总产率,其强弱顺序为:高温快速>高温慢速>低温快速≈低温慢速;基于高温快速热解,大粒径和低含水率可分别降低总产率5%-11%和4%-6%;燃料组分影响NH3产率,低温或慢速下,N结构差别使PMW>HTW;高温快速下,灰分元素差异使PMW < HTW;半焦N结构及N分布表明,典型热解条件下总产率为20%-45%,与药渣种类无关,可为其清洁利用提供参考。
  • 图  1  实验装置流程示意图

    Figure  1  Schematic diagram of the experimental system

    图  2  两药渣TG-DTG曲线

    Figure  2  TG/DTG curves of herb residues at heating rate of 15 ℃/min

    图  3  两药渣原料XPS (N 1s) 谱图

    Figure  3  N 1s XPS spectra of herb residues

    (a): HTW; (b): PMW

    图  4  两种热解类型下NOx前驱物随热解温度的变化

    Figure  4  Change of each NOx precursor vs. pyrolysis temperature under two pyrolysis types

    (a): slow pyrolysis-15 ℃/min; (b): rapid pyrolysis

    图  5  热解温度及类型对NOx前驱物生成的影响

    Figure  5  Effects of pyrolysis temperature and type on the formation of NOx precursors

    (a): ratio of HCN-N/NH3-N; (b): total yield of NOx precursors

    图  6  快速热解下粒径对NOx前驱物生成的影响

    Figure  6  Effect of particle size on the formation of NOx precursors under rapid pyrolysis

    (a): ratio of HCN-N/NH3-N; (b): total yield of NOx precursors

    图  7  快速热解下燃料含水率对NOx前驱物生成的影响

    Figure  7  Effect of moisture content on the formation of NOx precursors under rapid pyrolysis

    (a): ratio of HCN-N/NH3-N; (b): total yield of NOx precursors

    图  8  快速热解各温度下半焦XPS (N 1s) 谱图

    Figure  8  N 1s XPS spectra of Char-N at different temperature for rapid pyrolysis

    (a), (b), (c), (d): 300, 500, 700, 800 ℃-HTW; (e), (f), (g), (h): 300, 500, 700, 800 ℃-PMW

    图  9  快速热解N结构相对含量随温度的变化

    Figure  9  Relative amount of each nitrogen functionality vs. the temperature under rapid pyrolysis

    (a): HTW; (b): PMW

    图  10  快速热解N分布随温度的变化

    Figure  10  Nitrogen distribution vs. the temperature under rapid pyrolysis

    (a): HTW; (b): PMW

    表  1  药渣原料特性

    Table  1  Properties of herb residues

    Sample Proximate analysis wd/% Ultimate analysis wdsf/%
    V FC A C H S N Oa
    HTW 67.71 15.63 16.66 51.14 6.80 0.18 3.37 38.51
    PMW 78.95 12.73 8.32 48.73 7.14 0.57 8.05 35.52
    Ash analysis (expressed as w/% of metal oxides)
    SiO2 Al2O3 MgO Na2O Fe2O3 P2O5 CaO K2O TiO2 ZnO CuO SrO
    21.98 7.92 7.66 0.40 4.82 4.56 20.78 7.64 0.44 0.09 0.03 0.08
    0.39 0.14 3.62 2.85 0.50 30.82 22.64 19.15 0.01 0.09 0.02 0.03
    a: by difference
    下载: 导出CSV

    表  2  实验因素及操作条件

    Table  2  Operational conditions chosen for the experiments

    Conditions Value range
    Pyrolysis temperature t/℃ 300, 500, 600, 700, 800, 900
    Heating rate r/(℃·min-1) slow pyrolysis: 15; rapid pyrolysis: about 103
    Particle size d/μm 0-300, 300-600, 600-900
    Moisture content w/% 0, 5, 10, 15, 20
    下载: 导出CSV
  • [1] 许光文, 纪文峰, 刘周恩, 万印华, 张小勇.轻工生物质过程残渣高值化利用必要性与技术路线分析[J].过程工程学报, 2009, 9(3):618-624. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200903037.htm

    XU Guang-wen, JI Wen-feng, LIU Zhou-en, WAN Yin-hua, ZHANG Xiao-yong. Necessity and technical route of value-added utilization of biomass process residues in light industry[J]. Chin J Process Eng, 2009, 9(3):618-624. http://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ200903037.htm
    [2] ZENG X, SHAO R Y, WANG F, DONG P W, YU J, XU G W. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process[J]. Bioresour Technol, 2016, 206:93-98. doi: 10.1016/j.biortech.2016.01.075
    [3] DONG L, XU G W, SUDA T, MURAKAMI T. Potential approaches to improve gasification of high water content biomass rich in cellulose in dual fluidized bed[J].Fuel Process Technol, 2010, 91(8):882-888. doi: 10.1016/j.fuproc.2009.12.012
    [4] 邹艳敏, 吴静波, 仰榴青, 赵江丽, 吴向阳.中药渣的综合利用研究进展[J].江苏中医药, 2008, 40(12):113-115. http://www.cnki.com.cn/Article/CJFDTOTAL-JSZY200812083.htm

    ZOU Yan-min, WU Jing-bo, YANG Liu-qing, ZHAO Jiang-li, WU Xiang-yang. Research development on the comprehensive utilization of Chinese herb residues[J]. Jiangsu J Tradit Chin Med, 2008, 40(12):113-115. http://www.cnki.com.cn/Article/CJFDTOTAL-JSZY200812083.htm
    [5] 冼萍, 钟莉莹, 王孝英.两面针药渣的热解气化利用特性分析[J].可再生能源, 2007, 25(1):26-28. http://www.cnki.com.cn/Article/CJFDTOTAL-NCNY200701007.htm

    XIAN Ping, ZHONG Li-ying, WANG Xiao-ying. The analyses of residue of anthoxylumnitidum decoction asgasification feedstock[J]. Renewable Energy Resour, 2007, 25(1):26-28. http://www.cnki.com.cn/Article/CJFDTOTAL-NCNY200701007.htm
    [6] WANG P, ZHAN S H, YU H B, XUE X F, HONG N. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue)[J]. Bioresour Technol, 2010, 101(9):3236-3241. doi: 10.1016/j.biortech.2009.12.082
    [7] GUO F Q, DONG Y P, DONG L, JING Y Z. An innovative example of herb residues recycling by gasification in a fluidized bed[J]. Waste Manage, 2013, 33(4):825-832. doi: 10.1016/j.wasman.2012.12.009
    [8] GUO F Q, DONG Y P, ZHANG T H, DONG L, GUO C W, RAO Z H. Experimental study on herb residue gasification in an air-blown circulating fluidized bed gasifier[J]. Ind Eng Chem Res, 2014, 53(34):13264-13273. https://www.researchgate.net/publication/272144046_Experimental_Study_on_Herb_Residue_Gasification_in_an_Air-Blown_Circulating_Fluidized_Bed_Gasifier
    [9] 杨帅, 张兆玲, 孟剑锋, 董玉平, 梁敬翠, 盖超, 范鹏飞.循环流化床中菌渣热解气化特性的研究[J].高校化学工程学报, 2015, 29(4):997-1002. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201504031.htm

    YANG Shuai, ZHANG Zhao-ling, MENG Jian-feng, DONG Yu-ping, LIANG Jing-cui, GAI Chao, FAN Peng-fei. Study on pyrolysis gasification of fungus residues in circulating fluidized beds[J]. J Chem Eng Chin Univ, 2015, 29(4):997-1002. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201504031.htm
    [10] 尤占平, 郝长生, 焦永刚, 赵亮, 封春红.两种抗生素菌渣热解及燃烧特性对比研究[J].工业安全与环保, 2016, 42(5):41-43. http://www.cnki.com.cn/Article/CJFDTOTAL-GYAF201605015.htm

    YOU Zhan-ping, HAO Chang-sheng, JIAO Yong-gang, ZHAO Liang, FENG Chun-hong. Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues[J]. Ind Safety Environ Prot, 2016, 42(5):41-43. http://www.cnki.com.cn/Article/CJFDTOTAL-GYAF201605015.htm
    [11] 贡丽鹏.土霉素菌渣热解技术的研究[D].石家庄:河北科技大学, 2012.

    GONG Li-peng. Research on pyrolysis technology of terramycin bacterial residue[D]. Shijiazhuang:Hebei University of Science & Technology, 2012.
    [12] HANSSON K M, SAMUELSSON J, TULLIN C, AMAND L E. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J].Combust Flame, 2004, 137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005
    [13] GB 13271-2014, 锅炉大气污染物排放标准[S].

    GB 13271-2014, Emission standard of air pollutants for boiler[S].
    [14] BALAT M, BALAT M, KIRTAY E, BALAT H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1:Pyrolysis systems[J].Energ Convers Manage, 2009, 50(12):3147-3157. doi: 10.1016/j.enconman.2009.08.014
    [15] TIAN F J, LI B Q, CHEN Y, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅴ. Pyrolysis of a sewage sludge[J]. Fuel, 2002, 81(17):2203-2208. doi: 10.1016/S0016-2361(02)00139-4
    [16] BECIDAN M, SKREIBERG O, HUSTAD J E. NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues[J]. Energy Fuels, 2007, 21(2):1173-1180. doi: 10.1021/ef060426k
    [17] YUAN S, ZHOU Z J, LI J, CHEN X L, WANG F C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy Fuels, 2010, 24(11):6166-6171. doi: 10.1021/ef100959g
    [18] REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, WANG Z. Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2[J]. Fuel, 2010, 89(5):1064-1069. doi: 10.1016/j.fuel.2009.12.001
    [19] CHEN H F, WANG Y, XU G W, YOSHIKAWA K. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12):5418-5438. doi: 10.3390/en5125418
    [20] TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Conversion of fuel-N into HCN and NH3 during the pyrolysis and gasification in steam:A comparative study of coal and biomass[J]. Energy Fuels, 2007, 21(2):517-521. doi: 10.1021/ef060415r
    [21] AZNAR M, ANSELMO M S, MANYA J J, MURILLO M B. Experimental study examining the evolution of nitrogen compounds during the gasification of dried sewage sludge[J]. Energy Fuels, 2009, 23:3236-3245. doi: 10.1021/ef801108s
    [22] KELEMEN S R, AFEWORKI M, GORBATY M L, KWIATEK P J, SANSONE M, WALTERS C C, COHEN A D. Thermal transformations of nitrogen and sulfur forms in peat related to coalification[J]. Energy Fuels, 2006, 20(2):635-652. doi: 10.1021/ef050307p
    [23] TIAN Y, ZHANG J, ZUO W, CHEN L, CUI Y N, TAN T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol, 2013, 47(7):3498-3505. https://www.researchgate.net/publication/235904520_Nitrogen_Conversion_in_Relation_to_NH3_and_HCN_during_Microwave_Pyrolysis_of_Sewage_Sludge
    [24] WEI L H, WEN L, YANG T H, ZHANG N. Nitrogen transformation during sewage sludge pyrolysis[J]. Energy Fuels, 2015, 29(8):5088-5094. doi: 10.1021/acs.energyfuels.5b00792
    [25] ZHANG J, TIAN Y, CUI Y N, ZUO W, TAN T. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:A protein model compound study[J]. Bioresour Technol, 2013, 132:57-63. doi: 10.1016/j.biortech.2013.01.008
    [26] CHEN H F, NAMIOKA T, YOSHIKAWA K. Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge[J]. Appl Energy, 2011, 88(12):5032-5041. doi: 10.1016/j.apenergy.2011.07.007
    [27] TIAN K, LIU W J, QIAN T T, JIANG H, YU H Q. Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge[J]. Environ Sci Technol, 2014, 48(18):10888-10896. doi: 10.1021/es5022137
    [28] BEIS S H, ONAY O, KOCKAR O M. Fixed-bed pyrolysis of safflower seed:Influence of pyrolysis parameters on product yields and compositions[J]. Renewable Energy, 2002, 26(1):21-32. doi: 10.1016/S0960-1481(01)00109-4
    [29] TIAN F J, YU J L, MCKENZIE L J, HAYASHI J, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part Ⅸ. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam[J]. Fuel, 2006, 85(10/11):1411-1417.
    [30] REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, TANG G Y, WANG Z. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis[J]. J Anal Appl Pyrolysis, 2009, 85(1/2):447-453.
    [31] REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, WANG Z. Catalytic effects of Fe, Al and Si on the formation of NOx precursors and HCl during straw pyrolysis[J]. J Therm Anal Calorim, 2010, 99(1):301-306. doi: 10.1007/s10973-009-0150-0
    [32] ZHOU J Q, GAO P, DONG C Q, YANG Y P. TG-FTIR analysis of nitrogen conversion during straw pyrolysis:A model compound study[J]. J Fuel Chem Technol, 2015, 43(12):1427-1432. doi: 10.1016/S1872-5813(16)30001-9
    [33] 袁帅, 李军, 陈雪莉, 代正华, 周志杰, 王辅臣.吡咯型氮快速热解中NH3和HCN生成机理研究[J].燃料化学学报, 2011, 39(11):801-805. http://rlhxxb.sxicc.ac.cn/CN/Y2011/V39/I06/413

    YUAN Shuai, LI Jun, CHEN Xue-li, DAI Zheng-hua, ZHOU Zhi-jie, WANG Fu-chen. Study on NH3 and HCN formation mechanisms during rapid pyrolysis of pyrrolic nitrogen[J]. J Fuel Chem Technol, 2011, 39(11):801-805. http://rlhxxb.sxicc.ac.cn/CN/Y2011/V39/I06/413
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  40
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-24
  • 修回日期:  2017-01-06
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-03-10

目录

    /

    返回文章
    返回