留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高硫炼焦煤化学结构及硫赋存形态对硫热变迁的影响

申岩峰 王美君 HUYong-feng 孔娇 鲍卫仁 常丽萍

申岩峰, 王美君, HUYong-feng, 孔娇, 鲍卫仁, 常丽萍. 高硫炼焦煤化学结构及硫赋存形态对硫热变迁的影响[J]. 燃料化学学报(中英文), 2020, 48(2): 144-153.
引用本文: 申岩峰, 王美君, HUYong-feng, 孔娇, 鲍卫仁, 常丽萍. 高硫炼焦煤化学结构及硫赋存形态对硫热变迁的影响[J]. 燃料化学学报(中英文), 2020, 48(2): 144-153.
SHEN Yan-feng, WANG Mei-jun, HU Yong-feng, KONG Jiao, BAO Wei-ren, CHANG Li-ping. Effect of chemical structure and sulfur speciation of high-sulfur coking coals on sulfur transformation during pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 144-153.
Citation: SHEN Yan-feng, WANG Mei-jun, HU Yong-feng, KONG Jiao, BAO Wei-ren, CHANG Li-ping. Effect of chemical structure and sulfur speciation of high-sulfur coking coals on sulfur transformation during pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 144-153.

高硫炼焦煤化学结构及硫赋存形态对硫热变迁的影响

基金项目: 

国家自然科学基金 21878208

国家自然科学基金 21808152

国家自然科学基金 U1910201

山西省回国留学人员重点科研资助项目 2017-03

详细信息
  • 中图分类号: TQ530

Effect of chemical structure and sulfur speciation of high-sulfur coking coals on sulfur transformation during pyrolysis

Funds: 

The project was supported by National Natural Science Foundation of China 21878208

The project was supported by National Natural Science Foundation of China 21808152

The project was supported by National Natural Science Foundation of China U1910201

Research Project Supported by Shanxi Scholarship Council of China 2017-03

More Information
  • 摘要: 利用红外、拉曼、热重及XANES等技术对不同煤阶高硫炼焦煤的化学结构、原煤及焦样形态硫分布进行了准确判定, 对煤中化学结构及硫赋存形态与硫的热变迁行为进行了关联分析。结果表明, 高硫炼焦煤中硫的热变迁行为不仅与硫赋存形态有关, 而且受化学结构不同的高硫炼焦煤热解挥发分释放特性的影响。较低煤阶高硫炼焦煤中脂肪结构热分解产生大量挥发分, 且挥发分释放温区较宽, 形态硫分解产生的活性硫与挥发分中富氢组分相结合, 形成更多的含硫气体转移到气相中, 提高了热解脱硫率, 焦炭体相中噻吩硫相对含量高于表面, 硫化物硫则与之相反。煤化程度升高, 煤中稳定噻吩类硫含量增多, 挥发分释放量减少, 热解脱硫率降低, 且形态硫在焦炭体相与表面的分布差异不明显。无机硫脱除率与黄铁矿硫分解程度直接相关, 热解过程中也将形成部分新的无机硫滞留于焦中。煤结构及有机硫的赋存形态决定了有机硫脱除率, 煤阶升高时有机硫脱除率明显降低。
  • 图  1  高硫炼焦煤的红外光谱谱图

    Figure  1  FT-IR spectra of the high-sulfur coals

    图  2  气煤2800-3000 cm-1 处吸收峰的分峰拟合

    Figure  2  Curve fitting from 2800-3000 cm-1 of FT-IR spectrum of QM

    图  3  高硫炼焦煤的拉曼光谱谱图

    Figure  3  Raman spectra of the high-sulfur coking coals

    图  4  气煤拉曼光谱分峰拟合

    Figure  4  Curve fitting of Raman spectra of QM

    图  5  高硫炼焦煤的TG及DTG曲线

    Figure  5  TG and DTG curves of the high-sulfur coking coals

    图  6  高硫炼焦煤热解过程中H2S及COS释放趋势

    Figure  6  Release curves of H2S and COS during pyrolysis of the high-sulfur coking coals

    图  7  高硫炼焦煤S-XANES谱图

    Figure  7  S-XANES spectra of the high-sulfur coking coals

    图  8  高硫炼焦煤热解焦样S-XANES谱图

    Figure  8  S-XANES spectra of the cokes from high-sulfur coking coals

    图  9  气煤S-XANES拟合谱图

    Figure  9  Curve fitting of S-XANES spectrum of QM

    图  10  煤样及焦样体相和表面形态硫的分布

    Figure  10  Sulfur distribution in coal and coke under FY and TEY mode

    FeS2;sulfide; thiophene; sulfoxide; sulfone; sulfonate; sulfate; FeS; CaS

    表  1  高硫炼焦煤分析数据

    Table  1  Analysis of the high-sulfur coking coals

    Sample Proximate analysis w/% Ultimate analysisw/% Sulfur form wd/% G Y/mm
    Mad Ad Vdaf Cdaf Hdaf Ndaf Sd O* Ss Sp So*
    QM 0.81 9.93 42.28 74.99 5.32 1.41 2.42 15.59 0.01 0.86 1.55 94 17.9
    FM 0.19 9.14 28.48 83.35 4.84 1.35 3.88 6.19 0.07 0.07 3.74 100 33.2
    JM 0.71 8.53 24.72 90.46 4.83 1.59 1.42 1.57 0.04 0.16 1.22 93 25
    SM 0.61 10.94 16.19 90.91 4.34 1.42 2.32 0.72 0.03 0.30 1.99 19 -
    note: ad: air dried basis; d: dry basis; daf: dry and ash-free basis; Sp: pyritic sulfur; Ss: sulfate sulfur; So: organic sulfur; *: by difference
    下载: 导出CSV

    表  2  高硫炼焦煤灰成分分析

    Table  2  Ash composition of the high-sulfur coking coals

    Sample Ash composition w/% AI
    SiO2 Al2O3 Fe2O3 CaO MgO TiO2 SO3 K2O Na2O P2O5
    QM 56.98 24.64 6.16 5.17 1.39 1.44 1.48 1.34 0.38 0.28 0.34
    FM 47.44 37.76 2.62 3.46 0.22 1.77 3.18 1.93 0.66 0.09 0.10
    JM 49.84 39.07 3.13 1.84 0.32 1.62 0.90 0.31 0.84 0.34 0.07
    SM 48.53 41.31 3.84 1.72 0.31 1.39 0.56 0.16 0.45 0.10 0.07
    下载: 导出CSV

    表  3  高硫炼焦煤红外光谱结构参数

    Table  3  Structure parameters of FT-IR spectra of the high-sulfur coking coals

    Sample fa I1 I2 I3
    QM 0.59 0.17 0.03 1.02
    FM 0.68 0.22 0.05 1.94
    JM 0.74 0.30 0.07 2.00
    SM 0.77 0.38 0.08 2.55
    下载: 导出CSV

    表  4  拉曼光谱分峰拟合结构参数

    Table  4  Sructure parameters from curve fitting of Raman spectra

    Sample W-D/cm-1 W-G/cm-1 FWHM-G/cm-1 ID/IG ID/I(GR+VR+VL) IS/IG
    QM 1373 1592 74.13 0.50 0.26 0.26
    FM 1365 1594 66.36 0.61 0.22 0.30
    JM 1360 1592 67.12 0.66 0.29 0.28
    SM 1353 1593 63.68 0.67 0.32 0.34
    下载: 导出CSV

    表  5  高硫炼焦煤的热重分析结果

    Table  5  Thermogravimetric analysis results of the high-sulfur coking coals

    Sample Temperature t/℃ wmax /(%·min-1)
    ti> teo tf tef tmax
    QM 300 387 855 600 433, 560 -2.19, -1.48
    FM 320 426 850 580 482 -1.96
    JM 345 453 850 573 494 -1.67
    SM 400 485 850 600 517 -0.91
    note: ti:initial temperature; teo: extrapolated onset temperature; tf: final temperature; tef: extrapolated final temperature; tmax: maximum weight loss temperature; wmax: maximum weight loss rate
    下载: 导出CSV

    表  6  高硫炼焦煤单独热解焦产率, 焦中硫含量及脱硫率

    Table  6  Coke yield, sulfur content in coke and desulfurization rate during pyrolysis of the high-sulfur coking coals

    Sample Coke yield w/% Sulfur content in coke/% Total sulfur removal/% Inorganic sulfur removal/% Organic sulfur removal/%
    QM 61.00 1.84 53.62 71.06 47.19
    FM 72.33 3.26 39.23 16.07 41.26
    JM 75.00 1.26 33.45 42.21 32.12
    SM 79.67 2.45 15.87 37.74 12.71
    下载: 导出CSV
  • [1] 么秋香, 杜美利, 王水利, 刘静, 杨建利, 上海涛.高硫煤中形态硫的热解迁移特性[J].煤炭转化, 2012, 35(2):17-21. doi: 10.3969/j.issn.1004-4248.2012.02.004

    YAO Qiu-xiang, DU Mei-li, WANG Shui-li, LIU Jing, YANG Jian-li, SHANG Hai-tao.Charateristics of sulfur forms transformation in high sulfur coal transformation[J].Coal Convers, 2012, 35(2):17-21. doi: 10.3969/j.issn.1004-4248.2012.02.004
    [2] 李梅, 杨俊和, 夏红波, 常海洲, 孙慧.典型炼焦高硫煤热解过程中硫迁移规律研究[J].煤炭转化, 2013, 36(4):41-45. doi: 10.3969/j.issn.1004-4248.2013.04.010

    LI Mei, YANG Jun-he, XIA Hong-bo, CHANG Hai-zhou, SUN Hui.Behavior of sulfur transformation during pyrolysis of high-sulfur coking coals[J].Coal Convers, 2013, 36(4):41-45. doi: 10.3969/j.issn.1004-4248.2013.04.010
    [3] 李梅, 杨俊和, 张启锋, 常海洲, 孙慧.用XPS研究新西兰高硫煤热解过程中氮、硫官能团的转变规律[J].燃料化学学报, 2013, 41(11):1287-1293. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201311002

    LI Mei, YANG Jun-he, ZHANG Qi-feng, CHANG Hai-zhou, SUN Hui.XPS study on transformation of N-and S-functional groups during pyrolysis of high sulfur New Zealand coal[J].J Fuel Chem Technol, 2013, 41(11):1287-1293. http://d.old.wanfangdata.com.cn/Periodical/rlhxxb201311002
    [4] YAN J, YANG J, LIU Z.SH radical:The key intermediate in sulfur transformation during thermal processing of coal[J].Environ Sci Technol, 2005, 39(13):5043-5051. doi: 10.1021/es048398c
    [5] ZHANG G, DU Y, ZHANG Y, XU Y.Desulfurization reaction model and experimental analysis of high sulfur coal under hydrogen atmosphere[J].J Ind Eng Chem, 2014, 20(2):487-493. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c816523ce1edbb70e5b49b7ff9b28f81
    [6] CHEN H, LI B, YANG J, ZHANG B.Transformation of sulfur during pyrolysis and hydropyrolysis of coal[J].Fuel, 1998, 77(6):487-493. doi: 10.1016/S0016-2361(97)00275-5
    [7] GU Y, YPERMAN J, REGGERS G, CARLEER R, VANDEWIJNGAARDEN J.Characterisation of volatile organic sulphur compounds release during coal pyrolysis in inert, hydrogen and CO2 atmosphere[J].Fuel, 2016, 184:304-313. doi: 10.1016/j.fuel.2016.06.085
    [8] JORJANI E, YPERMAN J, CARLEER R, REZAI B.Reductive pyrolysis study of sulfur compounds in different Tabas coal samples (Iran)[J].Fuel, 2006, 85(1):114-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f3aeb264de28d25709ea46efa847faa
    [9] 刘粉荣, 李文, 李保庆, 白宗庆.常压程序升温还原-质谱法研究遵义煤在热解过程中硫的变迁行为[J].燃料化学学报, 2008, 36(1):6-9. doi: 10.3969/j.issn.0253-2409.2008.01.002

    LIU Fen-rong, LI Wen, LI Bao-qing, BAI Zong-qing.Sulfur transformation during pyrolysis of Zunyi coal by atmosphere pressure-temperature programmed reduction-mass spectrum[J].J Fuel Chem Technol, 2008, 36(1):6-9. doi: 10.3969/j.issn.0253-2409.2008.01.002
    [10] 苏海强.内蒙高硫煤配煤炼焦的研究与应用[J].燃料与化工, 2011, 42(3):43-44. doi: 10.3969/j.issn.1001-3709.2011.03.019

    SU Hai-qiang.Study and application of blending coking of Inner mongolia high sulfur coal[J].Fuel Chem Process, 2011, 42(3):43-44. doi: 10.3969/j.issn.1001-3709.2011.03.019
    [11] 温增光, 邓彤.利用现有装置大比例使用高硫煤生产焦炭的实践探索[J].煤化工, 2017, 45(5):57-59. doi: 10.3969/j.issn.1005-9598.2017.05.014

    WEN Zeng-guang, DENG Tong.Practical exploration of coking with large proportion high sulfur coal using the existing equipment[J].Coal Chem Ind, 2017, 45(5):57-59. doi: 10.3969/j.issn.1005-9598.2017.05.014
    [12] ORREGO-RUIZ J, CABANZO R, MEJIA-OSPINO E.Study of colombian coals using photoacoustic fourier transform infrared spectroscopy[J].Int J Coal Geol, 2011, 85(3):307-310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4bd2fcb76d8c21a091af94aac8184f5
    [13] HE X, LIU X, NIE B, SUN D.FT-IR and Raman spectroscopy characterization of functional groups in various rank coals[J].Fuel, 2017, 206:555-563. doi: 10.1016/j.fuel.2017.05.101
    [14] IBARRA J, MOLINER R, BONET A J.FT-I.R.investigation on char formation during the early stages of coal pyrolysis[J].Fuel, 1994, 73(6):918-924. doi: 10.1016/0016-2361(94)90287-9
    [15] IBARRA J, MU OZ E, MOLINER R.FT-IR study of the evolution of coal structure during the coalification process[J].Org Geochem, 1996, 24(6/7):725-735. https://www.researchgate.net/publication/222789181_FTIR_Study_of_the_Evolution_of_Coal_Structure_during_the_Coalification_Process
    [16] LI K, KHANNA R, ZHANG J, BARATI M, LIU Z, XU T, YANG T, SAHAJWALLA V.Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques[J].Energy Fuels, 2015, 29(11):7178-7189. doi: 10.1021/acs.energyfuels.5b02064
    [17] LI X, HAYASHI J, LI C-Z.FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a victorian brown coal[J].Fuel, 2006, 85(12/13):1700-1707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f1d929e70499f5b83966ba0dfc5e28c
    [18] HINRICHS R, BROWN M, VASCONCELLOS M, ABRASHEV M, KALKREUTH W.Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy[J].Int J Coal Geol, 2014, 136:52-58. doi: 10.1016/j.coal.2014.10.013
    [19] MORGA R, JELONEK I, KRUSZEWSKA K.Relationship between coking coal quality and its micro-Raman spectral characteristics[J].Int J Coal Geol, 2014, 134/135:17-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ff41f755f42d3d02c7caf60bfcd3d4b
    [20] BAYSAL M, YURUM A, YILDIZ B, YURUM Y.Structure of some western Anatolia coals investigated by FT-IR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction[J].Int J Coal Geol, 2016, 163:166-176. doi: 10.1016/j.coal.2016.07.009
    [21] GUEDES A, VALENTIM B, PRIETO A C, RODRIGUES S, NORONHA F.Micro-Raman spectroscopy of collotelinite, fusinite and macrinite[J].Int J Coal Geol, 2010, 83(4):415-422. doi: 10.1016/j.coal.2010.06.002
    [22] WANG M, HU Y, WANG J, CHANG L, WANG H.Transformation of sulfur during pyrolysis of inertinite-rich coals and correlation with their characteristics[J].J Anal Appl Pyrolysis, 2013, 104(10):585-592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cfea0e528f783636a751ecbfb431df5
    [23] SHEN Y, WANG M, HU Y, KONG J, WANG J, CHANG L, BAO W.Transformation and regulation of sulfur during pyrolysis of coal blend with high organic-sulfur fat coal[J].Fuel, 2019, 249:427-433.
    [24] PRIETZEL J, BOTZAKI A, TYUFEKCHIEVA N, BRETTHOLLE M, THIEME J, KLYSUBUN W.Sulfur speciation in soil by S K-Edge XANES spectroscopy:Comparison of spectral deconvolution and linear combination fitting[J].Environ Sci Technol, 2011, 45(7):2878-2886. doi: 10.1021/es102180a
    [25] LIU L, FEI J, CUI M, HU Y, WANG J.XANES spectroscopic study of sulfur transformations during co-pyrolysis of a calcium-rich lignite and a high-sulfur bituminous coal[J].Fuel Process Technol, 2014, 121:56-62. doi: 10.1016/j.fuproc.2013.12.008
    [26] WALDO G, MULLINS O, PENNER-HAHN J, CRAMER S.Determination of the chemical environment of sulphur in petroleum asphaltenes by X-ray absorption spectroscopy[J].Fuel, 1992, 71(1):53-57. https://www.sciencedirect.com/science/article/pii/001623619290192Q
    [27] 尹浩, 刘桂建, 刘静静.煤热解过程中含硫气体的释放特征[J].环境化学, 2012, 31(3):330-334. http://d.old.wanfangdata.com.cn/Periodical/hjhx201203010

    YIN Hao, LIU Gui-jian, LIU Jing-jing.Release of sulfur containing gases during coal pyrolysis[J].Environ Chem, 2012, 31(3):330-334. http://d.old.wanfangdata.com.cn/Periodical/hjhx201203010
    [28] 秦跃强, 陈雪莉, 陈汉鼎, 刘海峰.添加CaO对煤热解过程中砷和硫迁移转化的影响[J].燃料化学学报, 2017, 45(2):147-156. doi: 10.3969/j.issn.0253-2409.2017.02.003

    QIN Yue-qiang, CHEN Xue-li, CHEN Han-ding, LIU Hai-feng.Effects of adding CaO on the release and transformation of arsenic and sulfur during coal pyrolysis[J].J Fuel Chem Technol, 2017, 45(2):147-156. doi: 10.3969/j.issn.0253-2409.2017.02.003
    [29] GUAN R, LI W, LI B.Effects of Ca-based additives on desulfurization during coal pyrolysis[J].Fuel, 2003, 82(15/17):1961-1966. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f2bad4d050b18bff815c25bc4baeeb29
    [30] WANG B, ZHAO S, HUANG Y, ZHANG J.Effect of some natural minerals on transformation behavior of sulfur during pyrolysis of coal and biomass[J].J Anal Appl Pyrolysis, 2014, 105:284-294. doi: 10.1016/j.jaap.2013.11.015
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  88
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 修回日期:  2019-12-21
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回