留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co/La-Ga-O复合氧化物用于催化二氧化碳加氢制乙醇

郑晋楠 安康 王嘉明 李晶 刘源

郑晋楠, 安康, 王嘉明, 李晶, 刘源. Co/La-Ga-O复合氧化物用于催化二氧化碳加氢制乙醇[J]. 燃料化学学报(中英文), 2019, 47(6): 697-708.
引用本文: 郑晋楠, 安康, 王嘉明, 李晶, 刘源. Co/La-Ga-O复合氧化物用于催化二氧化碳加氢制乙醇[J]. 燃料化学学报(中英文), 2019, 47(6): 697-708.
ZHENG Jin-nan, AN Kang, WANG Jia-ming, LI Jing, LIU Yuan. Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 697-708.
Citation: ZHENG Jin-nan, AN Kang, WANG Jia-ming, LI Jing, LIU Yuan. Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 697-708.

Co/La-Ga-O复合氧化物用于催化二氧化碳加氢制乙醇

基金项目: 

国家自然科学基金 21872101

国家自然科学基金 21576192

详细信息
  • 中图分类号: O643.38

Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O composite oxide catalyst

Funds: 

the National Natural Science Foundation of China 21872101

the National Natural Science Foundation of China 21576192

More Information
  • 摘要: 以LaCo1-xGaxO3为前驱体,还原后得到的Co/La2O3-La4Ga2O9复合氧化物催化剂,用于CO2加氢直接制乙醇。通过XRD、XPS、TPD和TEM等技术对催化剂结构进行了表征,采用微型固定床反应器在230-290℃、3 MPa、空速(GHSV)为3000 mL/(gcat·h)和H2/CO2进料物质的量比为3.0的条件下,考察了该Co/La-Ga-O复合氧化物用于CO2加氢制乙醇的催化性能。结果显示,该Co/La-Ga-O复合氧化物催化剂对生成乙醇具有很高的选择性。与LaCoO3相比,Ga的掺杂可抑制甲烷的形成,促进醇类(特别是乙醇)的生成。当Co/Ga比为7:3时,还原后的LaCo1-xGaxO3催化剂体现出最好的催化性能,CO2转化率为9.8%,总醇选择性达到74.7%,其中,液相产物中的乙醇质量分数可达到88.1%。基于实验结果推测,该催化剂上Co0和Coδ+的协同作用促使CO2选择性加氢生成乙醇。
  • 图  1  LaCo1-xGaxO3样品(x=0、0.2、0.3、0.4和0.5)的XRD谱图

    Figure  1  XRD patterns of the LaCo1-xGaxO3 samples (x=0, 0.2, 0.3, 0.4 and 0.5)

    图  2  LaCoO3(a)和LaCo0.7Ga0.3O3 (b)样品煅烧后、还原后和反应后的XRD谱图

    Figure  2  XRD patterns of the fresh, reduced and spent LaCoO3 (a) and LaCo0.7Ga0.3O3 (b) samples

    图  3  LaCo1-xGaxO3样品(x=0,0.2,0.3,0.4和0.5)的H2-TPR谱图

    Figure  3  H2-TPR profiles of the LaCo1-xGaxO3 samples (x=0, 0.2, 0.3, 0.4 and 0.5)

    图  4  还原后的LaCoO3(■)、LaCo0.8Ga0.2O3(●)、LaCo0.7Ga0.3O3(▲)以及LaCo0.7Ga0.3O3反应100 h后(▶)、LaCo0.6Ga0.4O3(▼)和LaCo0.5Ga0.5O3(◆)样品的N2吸附-脱附等温线(a)和BJH孔径分布曲线(b)

    Figure  4  N2 adsorption-desorption isotherms (a) and BJH pore size distribution (b) of the reduced LaCoO3 (■), LaCo0.8Ga0.2O3 (●), LaCo0.7Ga0.3O3 (▲) and LaCo0.7Ga0.3O3 after reaction for 100 h(▶), LaCo0.6Ga0.4O3 (▼) and LaCo0.5Ga0.5O3 (◆) samples

    图  5  还原后的LaCo1-xGaxO3样品的CO2-TPD谱图

    Figure  5  CO2-TPD profiles of the reduced LaCo1-xGaxO3 samples

    a: x=0; b: x=0.2, c: x=0.3, d: x=0.4; e: x=0.5

    图  6  反应后的LaCoO3(a),LaCo0.7Ga0.3O3(b)和还原后LaCo0.7Ga0.3O3(b′)样品的XPS谱图

    Figure  6  XPS spectra of the used LaCoO3 (a), LaCo0.7Ga0.303 (b) and reduced LaCo0.7Ga0.303 (b′) samples

    图  7  还原后((a)和(a′))以及反应100 h后((b)、(b′)和(b″))的LaCo0.7Ga0.303样品的TEM照片

    Figure  7  TEM images of LaCo0.7Ga0.303 samples after reduction ((a) and (a′)) and after 100 h reaction test ((b), (b′) and (b″))

    图  8  LaCo0.7Ga0.3O3样品反应48 h(a)、100 h(b)和LaCoO3样品反应48 h(c)的TG曲线

    Figure  8  TG curves of the spent LaCo0.7Ga0.3O3 catalysts after reaction for 48 h (a) and 100 h (b) and the used LaCoO3 catalyst after reaction for 48 h (c)

    图  9  还原后的LaCoO3(■)、LaCo0.8Ga0.2O3(●)、LaCo0.7Ga0.3O3(▲)、LaCo0.6Ga0.4O3(▼)、LaCo0.5Ga0.5O3(◆)样品的CO2转化率(a)、总醇选择性(b)和乙醇分布(c)随反应温度的变化

    Figure  9  CO2 conversion (a), selectivity to alcohols (b), and ethanol distribution (c) as function of reaction temperature on the reduced LaCoO3 (■), LaCo0.8Ga0.2O3 (●), LaCo0.7Ga0.3O3 (▲), LaCo0.6Ga0.4O3 (▼) and LaCo0.5Ga0.5O3 (◆) catalysts

    图  10  还原后LaCo0.7Ga0.3O3样品的液相分布随反应时间(h)的变化

    Figure  10  Distribution of ROH products with the time on steam for CO2 hydrogenation over the reduced LaCo0.7Ga0.3O3 catalyst

    表  1  LaCo1-xGaxO3样品(x=0、0.2、0.3、0.4和0.5)的元素组成、晶粒粒径、耗氢量以及还原度计算

    Table  1  Elemental analysis, crystal sizes, hydrogen consumptions and reducibility degree of Con+ in the LaCo1-xGaxO3 samples (x=0, 0.2, 0.3, 0.4 and 0.5)

    Sample Co loading/% Co/Gaa Co/Gab Crystal size of Coc, d/nm H2 uptake/
    (mmol·g-1)
    Co dispersion/%c, e H2 consumptions from TPR resultsf, g Total theoretic H2consumptionsg Reducibility degree of Con+/%
    α β
    x=0 26.6 - - 18.5 0.104 5.2 0.101 0.204 0.305 100
    x=0.2 20.6 4.00 3.97 8.8 0.184 11.5 0.077 0.162 0.242 98.8
    x=0.3 17.8 2.33 2.36 7.6(10.5)h 0.188(0.137) 13.4(9.8)h 0.068 0.138 0.211 97.6
    x=0.4 15.0 1.50 1.50 6.9 0.173 14.4 0.064 0.122 0.180 103.3
    x=0.5 12.3 1.00 1.01 7.4 0.136 13.6 0.051 0.108 0.149 106.7
    a: Co/Ga ratio in synthesis system; b: Co/Ga ratio in sample measured from ICP; c: calculated from the results of H2-TPD; d: the crystal size for catalysts after reduction; e: assuming H/Co=1; f: experimental H2 consumptions calculated from TPR results using CuO as the reference material; g: the unit is mmol H2 per 50 mg of catalyst; h: crystal size of Co after 100 h stability test in the parentheses
    下载: 导出CSV

    表  2  还原后LaCo1-xGaxO3样品(x=0、0.2、0.3、0.4和0.5)的物理性质

    Table  2  Physical properties of the reduced LaCo1-xGaxO3 samples

    Sample Specific surface area A/(m2·g-1) Total pore volume v/(cm3·g-1) Average pore size d/nm
    x=0 5.6 0.02 4.2
    x=0.2 9.6 0.04 27.0
    x=0.3 9.4(9.1)a 0.02(0.03)a 25.8(24.4)a
    x=0.4 8.8 0.02 8.9
    x=0.5 6.5 0.02 6.2
    a: data in the parentheses are for the spent catalyst after 100 h reaction test
    下载: 导出CSV

    表  3  通过XPS计算所得反应后的LaCo1-xGaxO3样品(x=0和0.3)表面组成

    Table  3  Surface atomic ratios calculated by XPS results of the spent LaCo1-xGaxO3 samples (x=0 and 0.3) after reaction

    Sample Atomic ratio/%
    La/Σ[M]a Co/Σ[M]a Ga/Σ[M]a
    LaCoO3-used 56.1(50.0)b 43.9(50.0)b -
    LaCo0.7Ga0.3O3-used 47.0(50.0)b 15.5(35.0)b 37.5(15.0)b
    a: the atomic ratio of metal M is M/(La+Co+Ga) and the data in the parentheses are theoretical values
    下载: 导出CSV

    表  4  LaCo1-xGaxO3(x=0、0.2、0.3、0.4和0.5)系列样品在CO2+H2的催化转化

    Table  4  Reaction results of CO2 hydrogenation to alcohols over reduced LaCo1-xGaxO3 catalysts (x=0, 0.2, 0.3, 0.4 and 0.5)a

    Sample CO2 conversion x/% Selectivityb sC, mol/% Alcohol distributionc w/%
    CH4 C2+H ROH MeOH EtOH
    x=0 30.4 97.8 1.7 0.5 77.0 23.0
    x=0.2 10.6 37.4 2.5 60.1 30.2 69.8
    x=0.3 9.8 23.1 2.2 74.7 11.9 88.1
    x=0.4 8.1 12.2 2.1 85.7 27.5 72.5
    x=0.5 4.78 11.1 2.4 86.5 - -
    a: reaction conditions: 240 ℃, 3 MPa, n(H2)/n(CO2) = 3.0, GSHV = 3000 mL/(gcat·h); the data were obtained after 18 h on stream;
    b: product selectivity was based carbon molar quantity, defined as the carbon molar quantity in a carbon-containing product divided by converted carbon moles; C2+H represents hydrocarbons exclusive of methane;
    c: alcohol distribution (mass ratio) is the weight fraction of each alcohol in total alcohols
    下载: 导出CSV

    表  5  Co基催化剂在适当反应条件下的CO2加氢活性和产物选择性[11, 18, 45]

    Table  5  Summary of reaction conditions with CO2 hydrogenation activity and product selectivity over Co-based catalyst reported in references

    Catalyst H2/CO2a t/℃ p/MPa CO2 con. x/% Selectivity sC, mol/%
    CO CH4 C2+H ROH
    Pt/Co3O4[11] 3 200 2 22.4 - 77.8 2.3 19.9
    Co/SiO2[18] 4 360 0.1 44.3 13.5 86.5 - -
    Co-Pt/Al2O3[45] 1 220 1.9 6.8 - 93.1 6.8 -
    a: the mole ratio of H2 to CO2
    下载: 导出CSV
  • [1] WANG D, BI Q, YIN G, ZHAO W, HUANG F, XIE X, JIANG M. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts[J]. Chem Commun (Camb), 2016, 52(99): 14226-14229. doi: 10.1039/C6CC08161D
    [2] WANG W, WANG S, MA X, GONG J. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem Soc Rev, 2011, 40(7): 3703-3727. doi: 10.1039/c1cs15008a
    [3] WEI W, JINLONG G. Methanation of carbon dioxide: An overview[J]. Front Chem Sci Eng, 2011, 5(1): 2-10. doi: 10.1007/s11705-010-0528-3
    [4] AZIZ M A A, JALIL A A, TRIWAHYONO S, AHMAD A. CO2 methanation over heterogeneous catalysts: Recent progress and future prospects[J]. Green Chem, 2015, 17(5): 2647-2663. doi: 10.1039/C5GC00119F
    [5] POROSOFF M D, YAN B, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy Environ Sci, 2016, 9(1): 62-73. doi: 10.1039/C5EE02657A
    [6] SUN K, LU W, QIU F, LIU S, XU X. Direct synthesis of DME over bifunctional catalyst: Surface properties and catalytic performance[J]. Appl Catal A: Gen, 2003, 252(2): 243-249. doi: 10.1016/S0926-860X(03)00466-6
    [7] WANG L, WANG L, ZHANG J, LIU X, WANG H, ZHANG W, YANG Q, MA J, DONG X, YOO S J, KIM J, MENG X, XIAO F. Selective hydrogenation of CO2 to ethanol over cobalt catalysts[J]. Angew Chem Int Ed, 2018, 57(21): 6104-6108. doi: 10.1002/anie.201800729
    [8] WANG D, BI Q, YIN G, ZHAO W, HUANG F, XIE X, JIANG M. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts[J]. Chem Commun, 2016, 52(99): 14226-14229. doi: 10.1039/C6CC08161D
    [9] QIAN Q, CUI M, HE Z, WU C, ZHU Q, ZHANG Z, MA J, YANG G, ZHANG J, HAN B. Highly selective hydrogenation of CO2 into C2+ alcohols by homogeneous catalysis[J]. Chem Sci, 2015, 6(10): 5685-5689. doi: 10.1039/C5SC02000J
    [10] HE Z, QIAN Q, MA J, MENG Q, ZHOU H, SONG J, LIU Z, HAN B. Water-enhanced synthesis of higher alcohols from CO2 Hydrogenation over a Pt/Co3O4 catalyst under milder conditions[J]. Angew Chem Int Ed, 2016, 55(2): 737-741. doi: 10.1002/anie.201507585
    [11] OUYANG B, XIONG S, ZHANG Y, LIU B, LI J. The study of morphology effect of Pt/Co3O4 catalysts for higher alcohol synthesis from CO2 hydrogenation[J]. Appl Catal A: Gen, 2017, 543: 189-195. doi: 10.1016/j.apcata.2017.06.031
    [12] PRIETO G. Carbon dioxide hydrogenation into higher hydrocarbons and oxygenates: Thermodynamic and kinetic bounds and progress with heterogeneousand homogeneous catalysis[J]. ChemSusChem, 2017, 10(6): 1056-1070. doi: 10.1002/cssc.201601591
    [13] GNANAMANI M K, JACOBS G, KEOGH R A, SHAFER W D, SPARKS D E, HOPPS S D, THOMAS G A, DAVIS B H. Fischer-Tropsch synthesis: Effect of pretreatment conditions of cobalt on activity and selectivity for hydrogenation of carbon dioxide[J]. Appl Catal A: Gen, 2015, 499: 39-46. doi: 10.1016/j.apcata.2015.03.046
    [14] GNANAMANI M K, HAMDEH H H, JACOBS G, SHAFER W D, HOPPS S D, THOMAS G A, DAVIS B H. Hydrogenation of carbon dioxide over K-promoted FeCo bimetallic catalysts prepared from mixed metal oxalates[J]. ChemCatChem, 2017, 9(7): 1303-1312. doi: 10.1002/cctc.201601337
    [15] GUO H, LI S, PENG F, ZHANG H, XIONG L, HUANG C, WANG C, CHEN X. Roles investigation of promoters in K/Cu-Zn catalyst and higher alcohols synthesis from CO2 hydrogenation over a novel two-stage bed catalyst combination system[J]. Catal Lett, 2015, 145(2): 620-630. doi: 10.1007/s10562-014-1446-7
    [16] GNANAMANI M K, JACOBS G, HAMDEH H H, SHAFER W D, LIU F, HOPPS S D, THOMAS G A, DAVIS B H. Hydrogenation of carbon dioxide over Co-Fe bimetallic catalysts[J]. ACS Catal, 2016, 6(2): 913-927. doi: 10.1021/acscatal.5b01346
    [17] POUR A N, HOSAINI E, IZADYAR M, HOUSAINDOKHT M R. Particle size effects in Fischer-Tropsch synthesis by Co catalyst supported on carbon nanotubes[J]. Chin J Catal, 2015, 36(8): 1372-1378. doi: 10.1016/S1872-2067(15)60840-3
    [18] ZHOU G, LIU H, XING Y, XU S, XIE H, XIONG K. CO2 hydrogenation to methane over mesoporous Co/SiO2 catalysts: Effect of structure[J]. J CO2 Util, 2018, 26: 221-229. doi: 10.1016/j.jcou.2018.04.023
    [19] LIU H, XU S, ZHOU G, XIONG K, JIAO Z, WANG S. CO2 hydrogenation to methane over Co/KIT-6 catalysts: Effect of Co content[J]. Fuel, 2018, 217: 570-576. doi: 10.1016/j.fuel.2017.12.112
    [20] LI Z, SI M, XIN L, LIU R, LIU R, LV J. Cobalt catalysts for Fischer-Tropsch synthesis: The effect of support, precipitant and pH value[J]. Chin J Chem Eng, 2018, 26(4): 747-752. doi: 10.1016/j.cjche.2017.11.001
    [21] JOHNSON G R, BELL A T. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. J Catal, 2016, 338: 250-264. doi: 10.1016/j.jcat.2016.03.022
    [22] LEE M, JUNG W. Hydrothermal synthesis of LaCO3OH and Ln3+-doped LaCO3OH powders under ambient pressure and their transformation to La2O2CO3 and La2O3[J]. Bull Korean Chem Soc, 2013, 34(12): 3609-3614. doi: 10.5012/bkcs.2013.34.12.3609
    [23] CHAKRABARTI D, DE KLERK A, PRASAD V, GNANAMANI M K, SHAFER W D, JACOBS G, SPARKS D E, DAVIS B H. Conversion of CO2 over a Co-based Fischer-Tropsch catalyst[J]. Ind Eng Chem Res, 2015, 54(4): 1189-1196. doi: 10.1021/ie503496m
    [24] GAO P, LI F, ZHAN H, ZHAO N, XIAO F, WEI W, ZHONG L, WANG H, SUN Y. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal, 2013, 298: 51-60. doi: 10.1016/j.jcat.2012.10.030
    [25] DU H, ZHU H, ZHAO Z, DONG W, LUO W, LU W, JIANG M, LIU T, DING Y. Effects of impregnation strategy on structure and performance of bimetallic CoFe/AC catalysts for higher alcohols synthesis from syngas[J]. Appl Catal A: Gen, 2016, 523: 263-271. doi: 10.1016/j.apcata.2016.06.022
    [26] BEDEL L, ROGER A C, ESTOURNES C, KIENNEMANN A. Co0 from partial reduction of La(Co, Fe)O3 perovskites for Fischer-Tropsch synthesis[J]. Catal Today, 2003, 85(2/4): 207-218. http://www.sciencedirect.com/science/article/pii/S0920586103003882
    [27] TONIOLO F S, MAGALHÃES R N S H, PEREZ C A C, SCHMAL M. Structural investigation of LaCoO3 and LaCoCuO3 perovskite-type oxides and the effect of Cu on coke deposition in the partial oxidation of methane[J]. Appl Catal B: Environ, 2012, 117/118: 156-166. doi: 10.1016/j.apcatb.2012.01.009
    [28] ONRUBIA J A, PEREDA-AYO B, DE-LA-TORRE U, GONZÁLEZ-VELASCO J R. Key factors in Sr-doped LaBO3 (B=Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification[J]. Appl Catal B: Environ, 2017, 213: 198-210. doi: 10.1016/j.apcatb.2017.04.068
    [29] NIU T, LIU G L, CHEN Y, YANG J, WU J, CAO Y, LIU Y. Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas[J]. Appl Surf Sci, 2016, 364: 388-399. doi: 10.1016/j.apsusc.2015.12.164
    [30] GUO S, LI S, ZHONG H, GONG D, WANG J, KANG N, ZHANG L, LIU G, LIU Y. Mixed oxides confined and tailored cobalt nanocatalyst for direct ethanol synthesis from syngas: A catalyst designing by using Perovskite-Type oxide as the precursor[J]. Ind Eng Chem Res, 2018, 57(6): 2404-2415. doi: 10.1021/acs.iecr.7b04336
    [31] PODILA S, DRISS H, ZAMAN S F, ALHAMED Y A, ALZAHRANI A A, DAOUS M A, PETROV L A. Hydrogen generation by ammonia decomposition using Co/MgO-La2O3 catalyst: Influence of support calcination atmosphere[J]. J Mol Catal A: Chem, 2016, 414: 130-139. doi: 10.1016/j.molcata.2016.01.012
    [32] DE LA PEÑA O SHEA V A, GONZÁLEZ S, ILLAS F, FIERRO J L G. Evidence for spontaneous CO2 activation on cobalt surfaces[J]. Chem Phys Lett, 2008, 454(4/6): 262-268. http://www.sciencedirect.com/science/article/pii/S0009261408001759
    [33] YAZDANI P, WANG B, GAO F, KAWI S, BORGNA A. Role of the strong lewis base sites on glucose hydrogenolysis[J]. ChemCatChem, 2018, 10(17): 3845-3853. doi: 10.1002/cctc.201800427
    [34] PODILA S, DRISS H, ZAMAN S F, ALI A M, AL-ZAHRANI A A, DAOUS M A, PETROV L A. Effect of preparation methods on the catalyst performance of Co/Mg La mixed oxide catalyst for COx-free hydrogen production by ammonia decomposition[J]. Int J Hydrogen Energy, 2017, 42(38): 24213-24221. doi: 10.1016/j.ijhydene.2017.07.112
    [35] ZHANG Y, HAN K, CHENG T, FANG Z. Synthesis, characterization, and photoluminescence property of LaCO3OH microspheres[J]. Inorg Chem, 2007, 46(11): 4713-4717. doi: 10.1021/ic0701458
    [36] JENA H, GOVINDAN KUTTY K V, KUTTY T R N. Novel wet chemical synthesis and ionic transport properties of LaGaO3 and selected doped compositions at elevated temperatures[J]. Mater Sci Eng B, 2004, 113(1): 30-41. doi: 10.1016/j.mseb.2004.06.017
    [37] JAIN R, GOPINATH C S. New strategy toward a dual functional nanocatalyst at ambient conditions: Influence of the Pd-Co interface in the catalytic activity of Pd@Co core-shell nanoparticles[J]. ACS Appl Mater Interfaces, 2018, 10(48): 41268-41278. doi: 10.1021/acsami.8b12940
    [38] BIESINGER M C, PAYNE B P, GROSVENOR A P, LAU L W M, GERSON A R, SMART R S C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Appl Surf Sci, 2011, 257(7): 2717-2730. doi: 10.1016/j.apsusc.2010.10.051
    [39] LIU L F, KANG J F, WANG Y, TANG H, KONG L G, SUN L, ZHANG X, HAN R Q. The influence of hydrogen annealing on magnetism of Co-doped TiO2 films prepared by sol-gel method[J]. J Magn Magn Mater, 2007, 308(1): 85-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6aa40746153718f5fd0c5864a7ac3240
    [40] ZHAO L, HAN T, WANG H, ZHANG L, LIU Y. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol[J]. Appl Catal B: Environ, 2016, 187: 19-29. doi: 10.1016/j.apcatb.2016.01.007
    [41] SAN-JOSÉ-ALONSO D, JUAN-JUAN J, ILLÁN-GÍMEZ M J, ROMÁN-MARTÍNEZ M C. Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane[J]. Appl Catal A: Gen, 2009, 371(1/2): 54-59. http://www.sciencedirect.com/science/article/pii/S0926860X09006486
    [42] LIU F, ZHAO L, WANG H, BAI X, LIU Y. Study on the preparation of Ni-La-Ce oxide catalyst for steam reforming of ethanol[J]. Int J Hydrogen Energy, 2014, 39(20): 10454-10466. doi: 10.1016/j.ijhydene.2014.05.036
    [43] YANG Q, CAO A, KANG N, AN K, LIU Z, LIU Y. A new catalyst of Co/La2O3-doped La4Ga2O9 for direct ethanol synthesis from syngas[J]. Fuel Process Technol, 2018, 179: 42-52. doi: 10.1016/j.fuproc.2018.06.011
    [44] PEI Y, LIU J, ZHAO Y, DING Y, LIU T, DONG W, ZHU H, SU H, YAN L, LI J, LI W. High alcohols synthesis via Fischer-Tropsch reaction at cobalt metal/carbide interface[J]. ACS Catal, 2015, 5(6): 3620-3624. doi: 10.1021/acscatal.5b00791
    [45] R W DORNER D R H F, WILLAUER H D. Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst[J]. Energy Fuels, 2009, 23: 4190-4195. doi: 10.1021/ef900275m
    [46] JIAO G, DING Y, ZHU H, LI X, LI J, LIN R, DONG W, GONG L, PEI Y, LU Y. Effect of La2O3 doping on syntheses of C1-C18 mixed linear α-alcohols from syngas over the Co/AC catalysts[J]. Appl Catal A: Gen, 2009, 364(1/2): 137-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=646f4f80b9f060d1ffc633530adcb340
    [47] SMITH M L, KUMAR N, SPIVEY J J. CO adsorption behavior of Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts studied by in situ DRIFTS[J]. J Phys Chem C, 2012, 116(14): 7931-7939. doi: 10.1021/jp301197s
    [48] ZHANG Y, JACOBS G, SPARKS D E, DRY M E, DAVIS B H. CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts[J]. Catal Today, 2002, 71(3/4): 411-418. http://www.sciencedirect.com/science/article/pii/S0920586101004680
    [49] TAKANABE K, NAGAOKA K, NARIAI K, AIKA K. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane[J]. J Catal, 2005, 232(2): 268-275. doi: 10.1016/j.jcat.2005.03.011
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  70
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-26
  • 修回日期:  2019-03-27
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-06-10

目录

    /

    返回文章
    返回