留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凹凸棒石负载Cu-Fe-Co基催化剂组合体系用于CO加氢制备低碳醇

郭海军 李清林 张海荣 熊莲 彭芬 姚时苗 陈新德

郭海军, 李清林, 张海荣, 熊莲, 彭芬, 姚时苗, 陈新德. 凹凸棒石负载Cu-Fe-Co基催化剂组合体系用于CO加氢制备低碳醇[J]. 燃料化学学报(中英文), 2019, 47(11): 1346-1356.
引用本文: 郭海军, 李清林, 张海荣, 熊莲, 彭芬, 姚时苗, 陈新德. 凹凸棒石负载Cu-Fe-Co基催化剂组合体系用于CO加氢制备低碳醇[J]. 燃料化学学报(中英文), 2019, 47(11): 1346-1356.
GUO Hai-jun, LI Qing-lin, ZHANG Hai-rong, XIONG Lian, PENG Fen, YAO Shi-miao, CHEN Xin-de. Attapulgite supported Cu-Fe-Co based catalyst combination system for CO hydrogenation to lower alcohols[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1346-1356.
Citation: GUO Hai-jun, LI Qing-lin, ZHANG Hai-rong, XIONG Lian, PENG Fen, YAO Shi-miao, CHEN Xin-de. Attapulgite supported Cu-Fe-Co based catalyst combination system for CO hydrogenation to lower alcohols[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1346-1356.

凹凸棒石负载Cu-Fe-Co基催化剂组合体系用于CO加氢制备低碳醇

基金项目: 

广州市科技计划项目 201707010240

广东省自然科学基金 2018A030310126

广东省自然科学基金 2018A030313150

江苏省科技计划项目 BE2018342

中国科学院可再生能源重点实验室基金项目 Y807jc1001

详细信息
  • 中图分类号: O643.3

Attapulgite supported Cu-Fe-Co based catalyst combination system for CO hydrogenation to lower alcohols

Funds: 

the Science and Technology Program of Guangzhou 201707010240

the Project of Guangdong Provincial Natural Science Foundation 2018A030310126

the Project of Guangdong Provincial Natural Science Foundation 2018A030313150

the Project of Jiangsu Province Science and Technology BE2018342

the Project of Key Laboratory Foundation of Renewable Energy, Chinese Academy of Sciences (CAS) Y807jc1001

More Information
  • 摘要: 采用浸渍法(IM)和浸渍燃烧法(IMSC)制备了凹凸棒石(ATP)及凹凸棒石-多孔硅胶微球混合物(ATPS)负载Cu-Fe-Co基改性费托催化剂,通过N2吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、H2-程序升温还原(H2-TPR)和CO2-程序升温脱附(CO2-TPD)等手段对催化剂进行了表征,并将它们应用于CO加氢制备低碳醇反应。结果表明,IMSC较IM制备催化剂更有利于CuO的负载、分散和还原,促进H2和CO与Cu活性位的接触,但两者的最佳低碳醇合成温度均为280℃。通过对ATP和ATPS负载Cu-Fe-Co基催化剂(CFCK/ATP、CFCK/ATPS)与Cu/ZnO/Al2O3(CZA)甲醇催化剂的组合体系的优化,获得较理想的低碳醇合成催化剂组合体系CZA║CFCK/ATPS-IMSC。利用它们之间的"产物转化耦合效应",实现CO转化率为46.3%,低碳醇选择性为39.6%,C2+醇含量为22.7%。
  • 图  1  催化剂的BJH孔径分布

    Figure  1  BJH pore size distribution of catalysts

    图  2  凹凸棒石载体及催化剂的XRD谱图

    Figure  2  XRD patterns of ATP support and catalysts

    图  3  催化剂的XPS谱图

    Figure  3  XPS patterns of catalysts

    (a): CFCK/ATP-IMSC; (b): CFCK/ATPS-IMSC; (c): CZA

    图  4  催化剂的SEM(a)和TEM(b)照片

    Figure  4  SEM (a) and TEM (b) images of catalysts

    图  5  催化剂的H2-TPR谱图(a)和CO2-TPD谱图(b)

    Figure  5  H2-TPR patterns (a) and CO2-TPD patterns (b) of catalysts

    a: CFCK/ATP-IM; b: CFCK/ATPS-IM; c: CFCK/ATP-IMSC; d: CFCK/ATPS-IMSC; e: CZA

    图  6  反应温度对催化剂(a)CFCK/ATP-IM和(b)CFCK/ATP-IMSC的低碳醇合成性能的影响

    Figure  6  Effects of reaction temperature on the performances of lower alcohols synthesis over (a) CFCK/ATP-IM and (b) CFCK/ATP-IMSC catalysts

    reaction conditions: 5.5MPa, GHSV= 6000h-1, n(H2):n(CO)= 2:1 ROH: total alcohols; HC2+/HOC: C2+ hydrocarbons and other oxygenates; C1OH: methanol; C2+OH:C2+ alcohols

    图  7  催化剂组合方式对低碳醇合成性能的影响

    Figure  7  Effects of catalysts combining method on the performances of lower alcohols synthesis

    reaction conditions: 280℃, 5.5MPa, n(H2):n(CO)= 2:1 and GHSV= 2800h-1 a1: CFCK/ATP-IM║CZA; a2: CZA║CFCK/ATP-IM; a3: CFCK/ATP-IM+CZA; b1: CFCK/ATP-IMSC║CZA; b2: CZA║CFCK/ATP-IMSC; b3: CFCK/ATP-IMSC+CZA ROH: total alcohols; HC2+/HOC: C2+ hydrocarbons and other oxygenates; C1OH: methanol; C2+OH: C2+ alcohols

    表  1  催化剂的织构参数

    Table  1  Textural parameters of catalysts

    Support/
    Catalyst
    Surface area
    A/(m2·g-1)
    Pore volume
    v/(cm3·g-1)
    dPg
    /nm
    Oxides content wh/% dCuOi/
    nm
    ABETa Amicrob Aextc vtotald vmicroe vmesof CuO Fe2O3 Co3O4 ZnO Al2O3 K2O
    ATP 290.4 53.1 237.3 0.67 0.03 0.64 9.3 - 4.6 - - 8.5 1.1 -
    CFCK/ATP-IM 72.6 9.4 63.2 0.24 0 0.24 13.1 24.2 22.9 2.9 - - 2.1 41.8
    CFCK/ATPS-IM 88.4 17.6 70.8 0.39 0.01 0.40 17.4 23.8 21.8 2.7 - - 1.9 44.7
    CFCK/ATP-IMSC 101.8 7.9 93.9 0.35 0.01 0.34 13.5 27.4 24.0 3.0 - - 2.0 10.7
    CFCK/ATPS-IMSC 125.4 20.0 105.4 0.45 0.01 0.44 14.3 27.4 23.2 3.1 1.8 11.0
    CZA 73.1 0 73.1 0.25 0 0.25 13.9 48.0 - - 46.7 5.3 - 11.7
    a: BET surface area;b: micropore surface area;c: external surface area;d: total pore volume;e: micropore volume; f: mesopore volume;g: average pore size;h: detected by XRF;i: calculated using Scherrer equation based on the reflection of (111) lattice plane at 38.9°
    下载: 导出CSV

    表  2  双功能催化剂组合体系的低碳醇合成性能a

    Table  2  Catalytic performances of lower alcohols synthesis over dual-functional catalyst combination system

    Catalyt combination system CO conversion
    x/%
    Products selectivity (C-mol%) Alcohols distribution w/%
    CH4 CO2 ROHb HC2+/HOCc C1OH C2+OH
    CZA║CFCK/ATPS-IM 32.1 26.8 17.7 33.7 21.8 82.9 17.1
    CFCK/ATPS-IM║CZA 41.2 8.1 19.0 54.8 18.1 91.8 8.2
    CZA║CFCK/ATPS-IMSC 46.3 18.5 15.1 39.6 26.8 77.3 22.7
    CFCK/ATPS-IMSC║CZA 39.4 8.8 19.0 59.0 13.2 90.9 9.1
    a reaction condition: t= 280℃, p= 5.5MPa, n(H2):n(CO)= 2:1 and GHSV=2800h-1;b ROH: total alcohols;c HC2+/HOC: C2+ hydrocarbons and other oxygenates
    下载: 导出CSV
  • [1] ZHOU W, CHENG K, KANG J C, ZHOU C, SUBRAMANIAN V, ZHANG Q H, WANG Y. New horizon in C1 chemistry:Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev, 2019, 48(12):3193-3228. doi: 10.1039/C8CS00502H
    [2] LUK H T, MONDELLI C, FERRE D C, STEWART J A, PEREZ-RAMIREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017, 46(5):1358-1426. doi: 10.1039/C6CS00324A
    [3] AO M, PHAM G H, SUNARSO J, TADE M O, LIU S M. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018, 8(8):7025-7050. doi: 10.1021/acscatal.8b01391
    [4] ZAMAN S, SMITH K J. A review of molybdenum catalysts for synthesis gas conversion to alcohols:Catalysts, mechanisms and kinetics[J]. Catal Rev, 2012, 54(1):41-132. doi: 10.1080/01614940.2012.627224
    [5] AN Y L, LIN T J, YU F, YANG Y Z, ZHONG L S, WU M H, SUN Y H. Advances in direct production of value-added chemicals via syngas conversion[J]. Sci China Chem, 2017, 60(7):887-903. doi: 10.1007/s11426-016-0464-1
    [6] 肖康, 鲍正洪, 齐行振, 王新星, 钟良枢, 房克功, 林明桂, 孙予罕.合成气制混合醇双功能催化研究进展[J].催化学报, 2013, 34(1):116-129. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201301010

    XIAO Kang, BAO Zheng-hong, QI Xing-zhen, WANG Xin-xing, ZHONG Liang-shu, FANG Ke-gong, LIN Ming-gui, SUN Yu-han. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal, 2013, 34(1):116-129. http://d.old.wanfangdata.com.cn/Periodical/cuihuaxb201301010
    [7] DING M Y, TU J L, LIU J G, TSUBAKI N, WANG T J, MA L L. Copper-iron supported bimodal pore catalyst and its application for higher alcohols synthesis[J]. Catal Today, 2014, 234:278-284. doi: 10.1016/j.cattod.2014.01.039
    [8] 刘建国, 定明月, 王铁军, 马隆龙. Cu-Fe基双孔载体催化剂结构和低碳醇合成反应性能[J].物理化学学报, 2012, 28(8):1964-1970. doi: 10.3866/PKU.WHXB201205213

    LIU Jian-guo, DING Ming-yue, WANG Tie-jun, MA Long-long. Structure and performance of Cu-Fe bimodal support for higher alcohol syntheses[J]. Acta Phys-Chim Sin, 2012, 28(8):1964-1970. doi: 10.3866/PKU.WHXB201205213
    [9] 侯宾, 韩信有, 林明桂, 房克功. CuFe@SiO2催化剂的制备及其在CO加氢合成低碳醇中的应用[J].燃料化学学报, 2016, 44(2):217-224. doi: 10.3969/j.issn.0253-2409.2016.02.012

    HOU Bin, HAN Xin-you, LIN Ming-gui, FANG Ke-gong. Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation[J]. J Fuel Chem Technol, 2016, 44(2):217-224. doi: 10.3969/j.issn.0253-2409.2016.02.012
    [10] 郭海军, 熊莲, 罗彩容, 丁飞, 陈新德, 陈勇. Fe、Co组成对Cu-Fe-Co基混合醇催化剂合成性能的影响[J].物理化学学报, 2011, 27(11):2632-2638. doi: 10.3866/PKU.WHXB20111114

    GUO Hai-jun, XIONG Lian, LUO Cai-rong, DING Fei, CHEN Xin-de, CHEN Yong. Effect of Fe/Co mass ratio on catalytic performances of Cu-Fe-Co based catalysts for mixed alcohols synthesis[J]. Acta Phys-Chim Sin, 2011, 27(11):2632-2638. doi: 10.3866/PKU.WHXB20111114
    [11] XIANG Y Z, CHITRY V, LIDDICOAT P, FELFER P, CAIRNEY J, RINGER S, KRUSE N. Long-chain terminal alcohols through catalytic CO hydrogenation[J]. J Am Chem Soc, 2013, 135(19):7114-7117. doi: 10.1021/ja402512r
    [12] GAO W, ZHAO Y F, CHEN H R, CHEN H, LI Y W, HE S, ZHANG Y K, WEI M, EVANS D G, DUAN X. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[J]. Green Chem, 2015, 17(3):1525-1534. doi: 10.1039/C4GC01633E
    [13] GUO H J, LI S G, ZHANG H R, PENG F, XIONG L, YANG J, WANG C, CHEN X D, CHEN Y. Reaction condition optimization and lumped kinetics study for lower alcohols synthesis from syngas using a two-stage bed catalyst combination system[J]. Ind Eng Chem Res, 2014, 53(1):123-131. doi: 10.1021/ie402422p
    [14] LIN T J, QI X Z, WANG X X, XIA L, WANG C Q, YU F, WANG H, LI S G, ZHONG L S, SUN Y H. Direct production of higher oxygenates by syngas conversion over amultifunctional catalyst[J]. Angew Chem Int Ed, 2019, 58(14):4627-4631. doi: 10.1002/anie.201814611
    [15] DAS S K, MAJHI S, MOHANTY P, PANT K K. CO-hydrogenation of syngas to fuel using silica supported Fe-Cu-K catalysts:Effects of active components[J]. Fuel Process Technol, 2014, 118:82-89. doi: 10.1016/j.fuproc.2013.08.014
    [16] 毛东森, 郭强胜, 俞俊, 韩璐蓬, 卢冠忠. Ce添加对Cu-Fe/SiO2催化合成气制低碳醇性能的影响[J].物理化学学报, 2011, 27(11):2639-2645. doi: 10.3866/PKU.WHXB20111125

    MAO Dong-sen, GUO Qiang-sheng, YU Jun, HAN Lu-peng, LU Guan-zhong. Effect of Cerium addition on the catalytic performance of Cu-Fe/SiO2 for the synthesis of lower alcohols from syngas[J]. Acta Phys-Chim Sin, 2011, 27(11):2639-2645. doi: 10.3866/PKU.WHXB20111125
    [17] LU R L, MAO D S, YU J, GUO Q S. Enhanced activity of Cu-Fe/SiO2 catalyst for CO hydrogenation to higher alcohols by pretreating the support with ammonia[J]. J Ind Eng Chem, 2015, 25:338-343. doi: 10.1016/j.jiec.2014.11.013
    [18] 郭强胜, 毛东森, 俞俊, 韩璐蓬.不同载体对负载型Cu-Fe催化剂CO加氢反应性能的影响[J].燃料化学学报, 2012, 40(9):1103-1109. doi: 10.3969/j.issn.0253-2409.2012.09.013

    GUO Qiang-sheng, MAO Dong-sen, YU Jun, HAN Lu-peng. Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation[J]. J Fuel Chem Technol, 2012, 40(9):1103-1109. doi: 10.3969/j.issn.0253-2409.2012.09.013
    [19] SHI X P, YU H B, GAO S, LI X Y, FANG H H, LI R J, LI Y Y, ZHANG L J, LIANG X L, YUAN Y Z. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017, 210:241-248. doi: 10.1016/j.fuel.2017.08.064
    [20] 李志文, 陈丛标, 王俊刚, 林明桂, 侯博, 贾丽涛, 李德宝.氮掺杂介孔炭负载FeCu双金属催化剂及其CO加氢性能研究[J].燃料化学学报, 2019, 47(6):709-717. doi: 10.3969/j.issn.0253-2409.2019.06.008

    LI Zhi-wen, CHEN Cong-biao, WANG Jun-gang, LIN Ming-gui, HOU Bo, JIA Li-tao, LI De-bao. Nitrogen-doped mesoporous carbon supported FeCu bimetallic catalyst and its CO hydrogenation performance[J]. J Fuel Chem Technol, 2019, 47(6):709-717. doi: 10.3969/j.issn.0253-2409.2019.06.008
    [21] LUK H T, MONDELLI C, MITCHELL S, SIOL S, STEWART J A, CURULLA FERRÉ D, PÉREZ-RAMÍREZ J. Role of carbonaceous supports and Potassium promoter on higher alcohols synthesis over copper-iron catalysts[J]. ACS Catal, 2018, 8(10):9604-9618. doi: 10.1021/acscatal.8b02714
    [22] LUK H T, MONDELLI C, MITCHELL S, FERRE D C, STEWART J A, PEREZ-RAMIREZ J. Impact of carrier acidity on the conversion of syngas to higher alcohols over zeolite-supported copper-iron catalysts[J]. J Catal, 2019, 371:116-125. doi: 10.1016/j.jcat.2019.01.021
    [23] JIANG J L, XU Y, DUANMU C S, GU X, CHEN J. Preparation and catalytic properties of sulfonated carbon-palygorskite solid acid catalyst[J]. Appl Clay Sci, 2014, 95:260-264. doi: 10.1016/j.clay.2014.04.020
    [24] LI X Z, SHI H Y, ZHU W, ZUO S X, LU X W, LUO S P, LI Z Y, YAO C, CHEN Y S. Nanocomposite LaFe1-xNixO3/Palygorskite catalyst for photo-assisted reduction of NOx:Effect of Ni doping[J]. Appl Catal B:Environ, 2018, 231:92-100. doi: 10.1016/j.apcatb.2018.03.008
    [25] OUYANG J, ZHAO Z, SUIB S L, YANG H M. Degradation of Congo Red dye by a Fe2O3@CeO2-ZrO2/Palygorskite composite catalyst:Synergetic effects of Fe2O3[J]. J Colloid Interf Sci, 2019, 539:135-145. doi: 10.1016/j.jcis.2018.12.052
    [26] WANG Y Z, WANG Y N, LI X, LIU Z T, ZHAO Y X. Effect of ultrasonic treatment of palygorskite on the catalytic performance of Pd-Cu/palygorskite catalyst for room temperature CO oxidation in humid circumstances[J]. Environ Technol, 2018, 39(6):780-786. doi: 10.1080/09593330.2017.1311944
    [27] GUO H J, ZHANG H R, PENG F, YANG H J, XIONG L, HUANG C, WANG C, CHEN X D, MA L L. Mixed alcohols synthesis from syngas over activated palygorskite supported Cu-Fe-Co based catalysts[J]. Appl Clay Sci, 2015, 111:83-89. doi: 10.1016/j.clay.2015.03.009
    [28] GUO X M, MAO D S, LU G Z, WANG S, WU G S. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal, 2010, 271(2):178-185. doi: 10.1016/j.jcat.2010.01.009
    [29] CHU Z, CHEN H B, YU Y, WANG Q, FANG D Y. Surfactant-assisted preparation of Cu/ZnO/Al2O3 catalyst for methanol synthesis from syngas[J]. J Mol Catal A:Chem, 2013, 366:48-53. doi: 10.1016/j.molcata.2012.09.007
    [30] LEI H, HOU Z Y, XIE J W. Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine[J]. Fuel, 2016, 164:191-198. doi: 10.1016/j.fuel.2015.09.082
    [31] GRUNWALDT J D, MOLENBROEK A M, TOPSØE N Y, TOPSØE H, CLAUSEN B S. In situ investigations of structural changes in Cu/ZnO catalysts[J]. J Catal, 2000, 194(2):452-460. doi: 10.1006/jcat.2000.2930
    [32] XU R, YANG C, WEI W, LI W H, SUN Y H, HU T D. Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas[J]. J Mol Catal A:Chem, 2004, 221(1/2):51-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d05c8a2bc2692e281b5711e5863f1ae5
    [33] XU R, WEI W, LI W H, HU T D, SUN Y H. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas:Effect of calcination temperature[J]. J Mol Catal A:Chem, 2005, 234(1/2):75-83. doi: 10.1016/j.molcata.2005.01.048
    [34] DING M Y, QIU M H, LIU J G, LI Y P, WANG T J, MA L L, WU C Z. Influence of manganese promoter on co-precipitated Fe-Cu based catalysts for higher alcohols synthesis[J]. Fuel, 2013, 109:21-27. doi: 10.1016/j.fuel.2012.06.034
    [35] TIEN-THAO N, ZAHEDI-NIAKI M H, ALAMDARI H, KALIAGUINE S. Conversion of syngas to higher alcohols over nanosized LaCo0.7Cu0.3O3 perovskite precursors[J]. Appl Catal A:Gen, 2007, 326(2):152-163. doi: 10.1016/j.apcata.2007.04.009
    [36] GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts[J]. ACS Catal, 2011, 1(6):641-656. doi: 10.1021/cs2001048
    [37] GUO H J, ZHANG H R, PENG F, YANG H J, XIONG L, WANG C, HUANG C, CHEN X D, MA L L. Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas[J]. Appl Catal A:Gen, 2015, 503:51-61. doi: 10.1016/j.apcata.2015.07.008
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  66
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-12
  • 修回日期:  2019-09-28
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-11-10

目录

    /

    返回文章
    返回