留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

助剂M(M=Cr、Zn、Y、La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响

王东哲 冯旭 张健 陈琳 张磊 王宏浩 白金 张财顺 张政一

王东哲, 冯旭, 张健, 陈琳, 张磊, 王宏浩, 白金, 张财顺, 张政一. 助剂M(M=Cr、Zn、Y、La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报(中英文), 2019, 47(10): 1251-1257.
引用本文: 王东哲, 冯旭, 张健, 陈琳, 张磊, 王宏浩, 白金, 张财顺, 张政一. 助剂M(M=Cr、Zn、Y、La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报(中英文), 2019, 47(10): 1251-1257.
WANG Dong-zhe, FENG Xu, ZHANG Jian, CHEN Lin, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Cai-shun, ZHANG Zheng-yi. Effect of promoter M(M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1251-1257.
Citation: WANG Dong-zhe, FENG Xu, ZHANG Jian, CHEN Lin, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Cai-shun, ZHANG Zheng-yi. Effect of promoter M(M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1251-1257.

助剂M(M=Cr、Zn、Y、La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响

基金项目: 

国家自然科学基金 21376237

辽宁省教育厅科学研究经费项目 L20190338

辽宁省自然科学基金 2019-MS-221

详细信息
  • 中图分类号: O643

Effect of promoter M(M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol

Funds: 

the National Natural Science Foundation of China 21376237

Scientific Research Funds Project of Liaoning Education Department L20190338

Natural Science Fund in Liaoning Province 2019-MS-221

More Information
  • 摘要: 采用顺序浸渍法制备了掺杂助剂MM=Cr、Zn、Y、La)的CuO/CeO2催化剂,并利用XRF、XRD、BET、H2-TPR和XPS等手段对催化剂进行了表征,考察了不同助剂对CuO/CeO2催化剂结构、性质和性能的影响。结果表明,助剂的掺杂主要影响CuO/CeO2催化剂的CuO分散、催化剂的还原性质、CuO与CeO2间的相互作用和催化剂表面氧空穴含量。掺杂助剂Cr和Zn后,提高了CuO在催化剂表面的分散度,使CuO和CeO2间的相互作用加强,表面氧空穴增加,进而使得催化活性提高。而掺杂助剂Y和La后,降低了CuO在催化剂表面的分散度,使CuO和CeO2间的相互作用减弱,表面氧空穴减少,进而使得催化活性降低。其中,掺杂Cr助剂的催化剂催化性能较优,当反应条件为260 ℃,n(CH3OH):n(H2O)=1:1.2,甲醇水蒸气气体空速为1760 h-1时,最终转化率可达100%,重整尾气中CO含量为0.15%,与CuO/CeO2催化剂相比,转化率提高了10%,重整尾气中CO含量降低了0.34%。
  • 图  1  未掺杂助剂和掺杂不同助剂催化剂的XRD谱图

    Figure  1  XRD spectra of catalysts undoped promoters and doped with different promoters

    a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2

    图  2  未掺杂助剂和掺杂不同助剂催化剂的H2-TPR谱图

    Figure  2  H2-TPR spectra of catalysts undoped promoters and doped with different promoters

    a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2

    图  3  催化剂的Ce 3d XPS谱图

    Figure  3  Ce 3d XPS spectra of catalyst

    a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2

    图  4  催化剂的Cu 2p XPS谱图

    Figure  4  Cu 2p XPS spectra of catalyst

    a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2

    图  5  催化剂Cu LMM XPS谱图

    Figure  5  XPS spectra of catalyst Cu LMM

    a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2

    图  6  催化剂的O 1s XPS谱图

    Figure  6  O 1s XPS spectra of the catalysts

    a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2

    图  7  反应温度与催化剂性能的关联

    Figure  7  Correlation between reaction temperature and catalyst performance

    a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2; f: equil

    图  8  不同反应温度下重整尾气中的摩尔CO含量

    Figure  8  Molar CO content in reforming gas at different reaction temperatures

    a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2; f: equil

    表  1  不同助剂催化剂的元素含量

    Table  1  Element content of catalysts with different auxiliaries

    Catalyst Content of element w/%
    Cu Ce O Cr Zn Y La
    CuO/CeO2 7.9 73.4 18.7 - - - -
    Cr/CuO/CeO2 7.3 70.7 19.3 2.7 - - -
    Zn/CuO/CeO2 7.2 71.4 18.8 - 2.6 - -
    Y/CuO/CeO2 7.1 71.5 18.8 - - 2.6 -
    La/CuO/CeO2 7.3 71.4 18.6 - - - 2.7
    下载: 导出CSV

    表  2  催化材料的物化性质和产氢速率

    Table  2  Physicochemical properties and hydrogen production rate of catalytic materials

    Catalyst Specific surface area A/(m2·g-1) Pore volume v/(cm3·g-1) dCuO/nm Cu dispersiona/% Cu surface areaa A/(m2·g-1) H2 production rateb/(cm3·kg-1·s-1)
    CeO2 37.4 0.10 - - - -
    CuO/CeO2 21.9 0.09 29.9 15.3 8.8 379.7
    Cr/CuO/CeO2 18.6 0.08 20.2 16.8 9.7 631.2
    Zn/CuO/CeO2 28.2 0.11 22.5 16.5 9.5 521.8
    Y/CuO/CeO2 18.6 0.08 25.4 14.1 8.1 282.5
    La/CuO/CeO2 27.5 0.07 23.8 15.1 8.7 334.7
    a: determined by N2O experiments; b: reaction conditions: 280 ℃, n(CH3OH):n(H2O)=1.2:1, GHSV=1760 h-1
    下载: 导出CSV

    表  3  催化剂的还原峰位置

    Table  3  Reduction peak position of catalyst

    Catalyst Peak position t/ ℃
    peak α peak β peak γ
    CuO/CeO2 178 222 249
    Cr/CuO/CeO2 150 205 235
    Zn/CuO/CeO2 160 204 217
    Y/CuO/CeO2 247 264 285
    La/CuO/CeO2 203 252 272
    下载: 导出CSV

    表  4  催化剂的Ce 3d和Cu LMM XPS曲线拟合结果

    Table  4  Fitting results of Cu LMM and Ce 3d XPS curves of catalysts

    Catalyst Ce3+/(Ce3++Ce4+)/% Cu+/(Cu++Cu2+)/%
    CuO/CeO2 18.5 43.9
    Cr/CuO/CeO2 34.4 74.9
    Zn/CuO/CeO2 31.5 46.4
    Y/CuO/CeO2 13.5 31.5
    La/CuO/CeO2 15.9 40.2
    下载: 导出CSV
  • [1] HOU H J M. Hydrogen energy production using manganese/semiconductor system inspired by photosynthesisInt[J]. J Hydrogen Energy, 2017, 42(12): 8530-8538. doi: 10.1016/j.ijhydene.2017.01.100
    [2] WEI Z, KE Y, PEI P, YU W, CHU X Y, LI S L, YANG K. Hydrogen production from cylindrical methanol steam reforming microreactor with porous Cu-Al fiber sintered felt[J]. Int J Hydrogen Energy, 2018, 43(7): 3643-3654. doi: 10.1016/j.ijhydene.2017.12.118
    [3] XI H, HOU X, LIU Y, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem, 2015, 53(44): 11886-11889.
    [4] HAO C, ANDOLINA C M, LI J, CURNAN M T, SAIDI W A, ZHOU G W, YANG J C, VESER G. Dependence of H2 and CO2 selectivity on Cu oxidation state during partial oxidation of methanol on Cu/ZnO[J]. Appl Catal A: Gen, 2018, 556: 64-72. doi: 10.1016/j.apcata.2018.02.028
    [5] JAMPA S, JAMIESON A M, CHAISUWAN T, LUENGNARUEMITCHAI A, WONGKASEMJIT S. Achievement of hydrogen production from autothermal steam reforming of methanol over Cu-loaded mesoporous CeO2 and Cu-loaded mesoporous CeO2-ZrO2 catalysts[J]. Int J Hydrogen Energy, 2017, 42(22): 15073-15084. doi: 10.1016/j.ijhydene.2017.05.022
    [6] LIU Y, HAYAKAWA T, TSUNODA T, SUZUKI K, HAMAKAWA S, MURATA K, SHIOZAKI R, ISHⅡ T, KUMAGAI M. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts[J]. Top Catal, 2003, 22(3/4): 205-213. doi: 10.1023/A:1023519802373
    [7] LI Y F, DONG X F, LIN W M. Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol[J]. Int J Hydrogen Energy, 2004, 29(15): 1617-1621. doi: 10.1016/j.ijhydene.2004.03.001
    [8] PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. Effect of dopants on the performance of CuO-CeO2 catalysts in methanol steam reforming[J]. Appl Catal B: Environ, 2007, 69(3/4): 226-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5b9a1b2456f04891db3033b15ff1dd11
    [9] ZAHEDI T O, MAJID T, DEHGHANI K A. Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous Cu/SBA-15 nanocatalyst[J]. Int J Hydrogen Energy, 2018, 43(31): 14103-14120. doi: 10.1016/j.ijhydene.2018.06.035
    [10] YANG S Q, ZHOU F, LIU Y J, ZHANG L, YU C, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 44(14): 7252-7261. doi: 10.1016/j.ijhydene.2019.01.254
    [11] 刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺.载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].燃料化学学报, 2018, 46(8): 992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(8): 992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011
    [12] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭.稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(2): 179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(2): 179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007
    [13] 杨淑倩, 张娜, 贺建平, 张磊, 王宏浩, 白金, 张健, 刘道胜, 杨占旭. Ce的浸渍顺序对Cu/Zn-Al水滑石衍生催化剂用于甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(4): 479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014

    YANG Shu-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/ Zn-Al catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(4): 479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014
    [14] HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017, 42(15): 9930-9937. doi: 10.1016/j.ijhydene.2017.01.229
    [15] DAI B, ZHOU G, GE S, XIE H M, JIAO Z J, ZHANG G Z, XIONG K. CO2 reverse water-gas shift reaction on mesoporous M-CeO2 catalysts[J]. Can J Chem Eng, 2017, 95(4): 634-642. doi: 10.1002/cjce.22730
    [16] 贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞. CeO2改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J].高等学校化学学报, 2017, 38: 1822-1828. doi: 10.7503/cjcu20170158

    HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ, 2017, 38: 1822-1828. doi: 10.7503/cjcu20170158
    [17] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11): 4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
    [18] SHE W, QI T, CUI M, YAN P, NG S. W, LI W, LI G. Catalytic performance of CeO2-supported Ni catalyst for hydrogenation of nitroarenes fabricated via coordination-assisted strategy[J]. ACS Appl Mater Inter, 2018, 10(17): 14698-14707. doi: 10.1021/acsami.8b01187
    [19] ZHANG Y, ZHOU Y, PENG C, SHI J, WANG Q, HE L, SHI L. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation[J]. Appl Surf Sci, 2018, 436: 981-988. doi: 10.1016/j.apsusc.2017.12.036
    [20] PENG X, OMASTA T J, ROLLER J M, MUSTAIN W E. Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells[J]. Frontiers Energy, 2017, 11(3): 299-309. doi: 10.1007/s11708-017-0495-1
    [21] BENNICI S, GERVASINI A, RAVASIO N, ZACCHERIA F. Optimization of tailoring of CuOx species of silica alumina supported catalysts for the selective catalytic reduction of NOx[J]. J Phys Chem B, 2003, 107(22): 5168-5176. doi: 10.1021/jp022064x
    [22] FANG Z, REHMAN S U, SUN M, YUAN Y P, JIN S W, HONG B. Hybrid NiO-CuO mesoporous nanowire array with abundant oxygen vacancies and a hollow structure as a high-performance asymmetric supercapacitor[J]. J Mater Chem A, 2018, 6: 21131-21142. doi: 10.1039/C8TA08262F
    [23] AFONASENKO T N, TSYRULNIKOV P G, GULYAEVA T I, LEONTEVA N N, SMIRNOVA N S, KOCHUBEI D I, SUPRUN E A, SALANOV A N. (CuO-CeO2)/glass cloth catalysts for selective CO oxidation in the presence of H2: The effect of the nature of the fuel component used in their surface self-propagating high-temperature synthesis on their properties[J]. Kinet Catal, 2013, 54(1): 59-68. doi: 10.1134/S0023158412060018
    [24] KULKARNI G U, RAO C N R. EXAFS and XPS investigations of Cu/ZnO catalysts and their interaction with CO and methanol[J]. Top Catal, 2003, 22(3): 183-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c18db8e5a8333691cda5a303df6a1fb8
    [25] ESPINOS J P, MORALES J, BARRANCO A, CABALLERO A, HOLGADO J P, GONZALES-ELIPE A R. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts[J]. J Phys Chem B, 2002, 106(27): 6921-6929. doi: 10.1021/jp014618m
    [26] NATILE M M, GALENDA A, GLISENTI A. CuO/CeO2 nanocomposites: An XPS study[J]. Surf Sci Spectra, 2009, 16(1): 13-26. doi: 10.1116/11.20061005
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  80
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-17
  • 修回日期:  2019-09-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-10-10

目录

    /

    返回文章
    返回