留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焙烧温度对Ni/CaO-Al2O3结构及其催化重整性能的影响

荆洁颖 张子毅 王世东 李文英

荆洁颖, 张子毅, 王世东, 李文英. 焙烧温度对Ni/CaO-Al2O3结构及其催化重整性能的影响[J]. 燃料化学学报(中英文), 2018, 46(6): 673-679.
引用本文: 荆洁颖, 张子毅, 王世东, 李文英. 焙烧温度对Ni/CaO-Al2O3结构及其催化重整性能的影响[J]. 燃料化学学报(中英文), 2018, 46(6): 673-679.
JING Jie-ying, ZHANG Zi-yi, WANG Shi-dong, LI Wen-ying. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 673-679.
Citation: JING Jie-ying, ZHANG Zi-yi, WANG Shi-dong, LI Wen-ying. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2018, 46(6): 673-679.

焙烧温度对Ni/CaO-Al2O3结构及其催化重整性能的影响

基金项目: 

国家自然科学基金 21406155

山西省自然科学基金 201701D221237

山西省高等学校创新人才支持计划 164010121-S

详细信息
  • 中图分类号: TQ426

Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst

Funds: 

National Natural Science Foundation of China 21406155

Natural Science Foundation of Shanxi Province 201701D221237

Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi 164010121-S

More Information
  • 摘要: 采用共沉淀法制备了一系列具有类水滑石结构前驱体的Ni/CaO-Al2O3复合催化剂,考察了制备过程中焙烧温度对复合催化剂结构及性能的影响。结果表明,焙烧温度可调控活性组分Ni与载体之间的相互作用力,进而调变复合催化剂的比表面积、活性组分Ni的颗粒粒径。当焙烧温度为700 ℃时,Ni与载体之间相互作用力适宜,复合催化剂具有最大的比表面积(21.42 m2/g)和最小的Ni颗粒粒径(19.51 nm);该复合催化剂在CO2吸附强化CH4/H2O重整制氢过程中可得到98.31%的H2浓度和94.87%的CH4转化率,循环10次后,H2浓度仍能保持在97.35%以上。这是因为大的比表面积为反应提供了更多的活性位点,利于CO2吸附过程的强化,而小的Ni颗粒粒径提高了复合催化剂的抗烧结能力。
  • 图  1  催化剂评价装置示意图

    Figure  1  Schematic diagram of the catalytic evaluation apparatus

    图  2  复合催化剂前驱体的XRD谱图

    Figure  2  XRD pattern of the composite catalysts precursor

    图  3  不同焙烧温度复合催化剂的XRD谱图

    Figure  3  XRD patterns of the composite catalysts calcined at different temperature

    图  4  不同焙烧温度复合催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of the composite catalysts calcined at different temperature

    图  5  不同焙烧温度复合催化剂循环吸附性能

    Figure  5  CO2 cyclic sorption performance of the composite catalysts calcined at different temperature

    图  6  复合催化剂cat-700首次CO2吸附强化CH4/H2O重整反应性能

    Figure  6  Catalytic performance of cat-700 for the CO2 sorption enhanced methane steam reforming in the first cycle

    图  7  复合催化剂cat-700的10次CO2吸附强化CH4/H2O重整反应的H2和CO2浓度

    Figure  7  H2 and CO2 concentration variation during 10 runs of the CO2 sorption enhanced steam methane reforming over the composite catalyst cat-700

    表  1  不同焙烧温度复合催化剂的金属分散度与颗粒粒径

    Table  1  Metal dispersion and particle size of the composite catalysts calcined at different temperature

    Sample Metal surface area A/(m2·g-1) a Metal dispersion/%a CaO particle size d/nmb Ni particle size d/nmb
    Cat-700 11.95 1.79 36.89 19.51
    Cat-750 9.72 1.46 38.03 24.42
    Cat-800 7.13 1.07 40.12 28.81
    Cat-850 5.92 0.98 39.49 33.73
    a: calculated from H2-chemisorption; b: calculated from XRD results
    下载: 导出CSV

    表  2  不同焙烧温度复合催化剂的比表面积和孔结构

    Table  2  BET specific surface area and pore structure of the composite catalysts calcined at different temperature

    Sample BET specific surface area A/(m2·g-1) Total pore volume v/(cm3·g-1) Pore radius d/nm
    Cat-700 21.42 0.099 35.81
    Cat-750 14.57 0.054 33.62
    Cat-800 12.92 0.048 31.59
    Cat-850 12.30 0.043 30.42
    下载: 导出CSV
  • [1] BALASUBRAMANIAN B, ORTIZ A L, KAYTAKOGLU S, HARRISON D P. Hydrogen from methane in a single-step process[J]. Chem Eng Sci, 1999, 54(15):3543-3552.
    [2] SILVA J M, SORIA M A, MADEIRA L M. Thermodynamic analysis of glycerol steam reforming for hydrogen production with in situ hydrogen and carbon dioxide separation[J]. J Power Sources, 2015, 273:423-430. doi: 10.1016/j.jpowsour.2014.09.093
    [3] ROMANO M C, CASSOTTI E N, CHIESA P, MEYER J, MASTIN J. Application of the sorption enhanced-steam reforming process in combined cycle-based power plants[J]. Energy Procedia, 2011, 4(4):1125-1132. https://core.ac.uk/download/pdf/82327775.pdf
    [4] LYSIKOV A, DEREVSCHIKOV V, OKUNEV A. Sorption-enhanced reforming of bioethanol in dual fixed bed reactor for continuous hydrogen production[J]. Int J Hydrogen Energy, 2015, 40(42):14436-14444. doi: 10.1016/j.ijhydene.2015.06.029
    [5] XUE X, WU S. The microstructure and stability of a Ni-nano-CaO/Al2O3 reforming catalyst under carbonation-calcination cycling conditions[J]. Int J Hydrogen Energy, 2015, 40(16):5617-5623. doi: 10.1016/j.ijhydene.2015.02.032
    [6] LI M. Thermodynamic analysis of adsorption enhanced reforming of ethanol[J]. Int J Hydrogen Energy, 2009, 34(23):9362-9372. doi: 10.1016/j.ijhydene.2009.09.054
    [7] JING J Y, LI T Y, ZHANG X W, WANG S D, FENG J, TURMEL W A, LI W Y. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Appl Energy, 2017, 199:225-233. doi: 10.1016/j.apenergy.2017.03.131
    [8] JING J Y, ZHANG X W, WANG S D, LI T Y, LI W Y. Improving CO2 sorption performance of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere[J]. Energy Procedia, 2017, 142:3258-3263. doi: 10.1016/j.egypro.2017.12.500
    [9] GARCIA-LARIO A L, AZNAR M, GRASA G S, MURILLO R. Evaluation of process variables on the performance of sorption enhanced methane reforming[J]. J Power Sources, 2015, 285:90-99. doi: 10.1016/j.jpowsour.2015.03.075
    [10] CHEN Y, MAHECHABOTERO A, LIM C J, GRACE J R, ZHANG J, ZHAO Y, ZHENG C. Hydrogen production in a sorption-enhanced fluidized-bed membrane reactor:Operating parameter investigation[J]. Ind Eng Chem Res, 2014, 53(14):6230-6242. doi: 10.1021/ie500294k
    [11] RADFARNIA H R, ILIUTA M C. Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent-catalyst[J]. Chem Eng Process, 2014, 86:96-103. doi: 10.1016/j.cep.2014.10.014
    [12] CHANBURANASIRI N, RIBEIRO A M, RODRIGUES A E, ARPORNWICHANOP A, LAOSIRIPOJANA N, PRASERTHDAM P, ASSABUMRUNGRAT S. Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst[J]. Ind Eng Chem Res, 2011, 50(24):69-86.
    [13] RADFRNIA H R, ILIUTA M C. Development of Al-stabilized CaO-nickel hybrid sorbent-catalyst for sorption-enhanced steam methane reforming[J]. Chem Eng Sci, 2014, 109(16):212-219.
    [14] CESARIO M R, BARROS B S, COURSON C, MELO D M A, KIENNEMANN A. Catalytic performances of Ni-CaO-mayenite in CO2 sorption enhanced steam methane reforming[J]. Fuel Process Technol, 2015, 131:247-253. doi: 10.1016/j.fuproc.2014.11.028
    [15] XU P, ZHOU Z, ZHAO C, CHENG Z. Ni/CaO-Al2O3 bifunctional catalysts for sorption-enhanced steam methane reforming[J]. AIChE J, 2015, 60(10):3547-3556.
    [16] PHROMPRASIT J, POWELL J, WONGSAKULPHASATCH S, KIATKITTIPONG W, BUMROONGSAKULSAWAT P, ASSABUMRUNGRAT S. Activity and stability performance of multifunctional catalyst (Ni/CaO and Ni/Ca12Al14O33-CaO) for bio-hydrogen production from sorption enhanced biogas steam reforming[J]. Int J Hydrogen Energy, 2016, 41(18):7318-7331. doi: 10.1016/j.ijhydene.2016.03.125
    [17] WU K, JING J Y, LI W Y. Calcination temperature influence on the catalytic performance of Ni/CeO2-ZrO2 for low temperature steam reforming of methane[C]//31st Annual International Pittsburgh Coal Conference, 2014. Pittsburgh, PA, USA.
    [18] LI T Y, JING J Y, FENG J, LI W Y. Carbon dioxide capture over Al-doped CaO-based sorbents with enhanced reactive stability in cyclic operations[C]//2015 Internation Conference on Coal Science and Technology, 2015. Australia.
    [19] 荆洁颖, 王世东, 张学伟, 李清, 李文英. Ca/Al物质的量比对Ni/CaO-Al2O3结构及其催化重整性能的影响[J].燃料化学学报, 2017, 45(8):956-962. http://rlhxxb.sxicc.ac.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=19072

    JING Jie-ying, WANG Shi-dong, ZHANG Xue-wei, LI Qing, LI Wen-ying. Influence of Ca/Al molar ratio on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol, 2017, 45(8):956-962. http://rlhxxb.sxicc.ac.cn/EN/article/downloadArticleFile.do?attachType=PDF&id=19072
    [20] WU C H, CHANG Y P, CHEN S Y, LIU D M, YU C T, PEN B L. Characterization and structure evolution of Ca-Al-CO3 hydrotalcite film for high temperature CO2 adsorption[J]. J Nanosci Nanotechnol, 2010, 10(7):4716-4720. doi: 10.1166/jnn.2010.1708
    [21] CHANG P H, CHANG Y P, CHEN S Y, YY C T, CHYOU Y P. Ca-rich Ca-Al-oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors:Synthesis, characterization, and CO2 capture capacity[J]. ChemSusChem, 2011, 4(12):1844-1851. doi: 10.1002/cssc.v4.12
    [22] 张帆, 吴嵘, 吴素芳.水热沉淀法制NiO-CaO/Al2O3复合催化剂及其在ReSER制氢中的应用[J].高等化学工程学报, 2014, 28(5):985-991. http://www.doc88.com/p-7844755122573.html

    ZHANG Fan, WU Rong, WU Su-fang. The preparation of a type of NiO-CaO sorption complex catalyst by hydrothermal precipitation method and its application in ReSER process[J]. J Chem Eng Chin Univ, 2014, 28(5):985-991. http://www.doc88.com/p-7844755122573.html
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  32
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-30
  • 修回日期:  2018-05-03
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-06-10

目录

    /

    返回文章
    返回